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1 Laws of Large Numbers

1.1. Basic Definitions

1.1. (i) A and B—A are disjoint with B = AU(B—A) so P(A)+P(B—A) = P(B)
and rearranging gives the desired result.

(ii) Let A/, = A, N A, By = A} and for n > 1, B, = A}, —U"_} A . Since the
B,, are disjoint and have union A we have using (i) and B,, C A,

P(A) =Y P(Bn) <> P(An)

m=1 m=1

(iii) Let B, = A,, — An—1. Then the B, are disjoint and have USS_; B, = A,
Up _1Bm = A, so

P(A) = i P(By) = lim Zn: P(Bn) = lim P(A,)

n— 00
=1

(iv) AS 1 A° so (iii) implies P(AS) 1 P(A®). Since P(B¢) =1— P(B) it follows
that P(A,) | P(A).

1.2. (i) Suppose A € F; for all i. Then since each F; is a o-field, A € F; for
each i. Suppose A1, As,... is a countable sequence of disjoint sets that are in
F; for all i. Then since each F; is a o-field, A = U,, A,,, € F; for each 1.

(ii) We take the interesection of all the o-fields containing A. The collection of
all subsets of 2 is a o-field so the collection is not empty.

1.3. It suffices to show that if F is the o-field generated by (a1,b1) X - X (an, by),
then F contains (i) the open sets and (ii) all sets of the form A; x - -- A,, where
A; € R. For (i) note that if G is open and = € G then there is a set of the
form (a1,b1) X -+ X (an,b,) with a;,b; € Q that contains x and lies in G, so
any open set is a countable union of our basic sets. For (ii) fix Ag,..., A, and
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let G={A:Ax Ay x---x A, € F}. Since F is a o-field it is easy to see that
if @ € G then G is a o-field so if G D A then G D 0(A). From the last result it
follows that if A1 € R, A1 X (a2,b2) X -+ X (an,b,) € F. Repeating the last
argument n — 1 more times proves (ii).

1.4. It is clear that if A € F then A € F. Now let A; be a countable collection
of sets. If AS is countable for some ¢ then (U;A;)¢ is countable. On the other
hand if A; is countable for each i then U;A; is countable. To check additivity
of P now, suppose the A; are disjoint. If A{ is countable for some ¢ then A; is
countable for all j # i so >, P(Ax) = 1 = P(UpA). On the other hand if A;
is countable for each ¢ then U;A; is and ), P(Ay) = 0= P(UrAg).

1.5. The sets of the form (aq,b1) X -+ X (a4, bq) where a;,b; € Q is a countable
collection that generates R<.

16.f BeRthen {ZeB}=({XeB}INAU{{Y eB}NA)eF

1.7.
P(x >4) < (2m)" /247178 = 3.3345 x 107°

The lower bound is 15/16’s of the upper bound, i.e., 3.126 x 10~°

1.8. The intervals (F(z—), F(z)), * € R are disjoint and each one that is
nonempty contains a rational number.

1.9. Let F~1(z) = sup{y : F(y) < x} and note that F(F~'(z)) = 2 when F is
continuous. This inverse wears a hat since it is different from the one defined
in the proof of (1.2). To prove the result now note that

P(F(X) <a) = P(X < F~\(2)) = F(F~(2)) =

1.10. If y € (g(),9(B)) then P(g(X) < y) = P(X < g'(y)) = F(g~'(y)).
Differentiating with respect to y gives the desired result.

1.11. If g(z) = €® then g~ !(z) =logz and ¢'(¢g~(x)) = x so using the formula
in the previous exercise gives (2m)~1/2e~(082)°/2 /.

1.12. (i) Let F(z) = P(X < z). P(X? <y) = F(y) — F(—/y) for y > 0.
Differentiating we see that X2 has density function

(F(WV) + F(=v)/2vy

(ii) In the case of the normal this reduces to (27ry)~/2e¥/2.
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1.2. Random Variables

2.1. Let G be the smallest o-field containing X ~!(A). Since o(X) is a o-field
containing X ~!(A), we must have G C o(X) and hence G = {{X € B} : B €
F} for some S O F O A. However, if G is a o-field then we can assume F is.
Since A generates S, it follows that F = S.

2.2. If {X; + X5 < x} then there are rational numbers r; with 1 + 7o < z and
X; <r; so

{Xl + Xo < w} = Url,rgeQ:r1+r2<m{X1 < 7‘1} n {X2 < 7‘2} cF

2.3. Let Qp = {w : Xp(w) - X(w)}. If w € Q it follows from the definition
of continuity that f(X,(w)) — f(X(w)). Since P(£2) = 1 the desired result
follows.

2.4. (i) If G is an open set then f~!(G) is open and hence measurable. Now
use A = the collection of open sets in (2.1).

(ii) Let G be an open set and let f(z) be the distance from z to the complement
of G, i.e, inf{|z —y| : y € G°}. f is continuous and {f > 0} = G, so we need
all the open sets to make all the continuous functions measurable.

2.5. If f is l.s.c. and z,, is a sequence of points that converge to x and have
f(zn) < athen f(x) <a,ie., {z: f(x) <a} is closed. To argue the converse
note that if {y : f(y) > a} is open for each a € R and f(z) > a then it is impos-
sible to have a sequence of points x,, — x with f(z,) < asoliminf, ., f(y) > a
and since a < f(z) is arbitrary, f is l.s.c.

The measurability of l.s.c. functions now follows from Example 2.1. For the
other type note that if f is u.s.c. then —f is measurable since it is Ls.c., so

f==(=/)s.

2.6. In view of the previous exercise we can show f° is Ls.c. by showing {z :
f°(z) > a} is open for each a € R. To do this we note that if f°(z) > a then
there is an ¢ > 0 and a z with |z — 2| < § — € so that f(z) > a but then if
ly—x| < e we have f2(y) > a. A similar argument shows that {z : fs(z) < a} is
open for each a € R so fs is u.s.c. The measurability of f© and fo now follows
from (2.5). The measurability of {f° = fo} follows from the fact that f° — fy
is.

2.7. Clearly the class of F measurable functions contains the simple functions
and by (2.5) is closed under pointwise limits. To complete the proof now it
suffices to observe that any f € F is the pointwise limit of the simple functions

Fa=—nV ([2"f]/2%) An.
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2.8. Clearly the collection of functions of the form f(X) contains the simple
functions measurable with respect to o(X). To show that it is closed under
pointwise limits suppose f,(X) — Z, and let f(z) = limsup,, fn(x). Since
f(X) = limsup,, fn(X) it follows that Z = f(X). Since any f(X) is the
pointwise limit of simple functions, the desired result follows from the previous
exercise.

2.9. Note that for fixed n the B,, , form a partition of R and By, », = Bam,nt+1U
Bam+1,n+1- If we write f,,(z) out in binary then as n — oo we get more digits
in the expansion but don’t change any of the old ones so lim, f,(z) = f(z)
exists. Since |fn(X(w)) — Y(w)] < 27" and fr(X(w)) — f(X(w)) for all w,
Y = f(X).

1.3. Expected Value

31.X-Y >0s0 E|X -Y|=EX-Y)=EX — EY = 0 and using (3.4) it
follows that P(|X —Y| > ¢€) = 0 for all € > 0.

3.2.(3.1c) is trivial if EX = coor EY = —00. When EXt < co and EY ™~ < o0,
we have E| X[, E|Y| < co since EX™ < EY™ and EXT > EY .

To prove (3.1a) we can without loss of generality suppose EX~,EY ™~ < oo
and also that EXT = oo (for if E|X|, E|Y| < oo the result follows from the
theorem). In this case, F(X +Y)” < EX~ +EY ™ <ooand E(X +Y)* >
EXT—EY =0c0s0o E(X+Y)=00=EX+EY.

To prove (3.1b) we note that it is easy to see that if a # 0 F(aX) = aEX. To
complete the proof now it suffices to show that if EY = oo then E(Y +b) = oo,
which is obvious if b > 0 and easy to prove by contradiction if b < 0.

3.3. Recall the proof of (5.2) in the Appendix. We let ¢(x) < ¢(x) be a linear
function with ¢(EX) = ¢(EFX) and note that Ep(X) > F{(X) = {(EX). If
equality holds then Exercise 3.1 implies that ¢(X) = ¢(X) a.s. When ¢ is
strictly convex we have ¢(z) > ¢(x) for x # EX so we must have X = EX a.s.

3.4. There is a linear function

n

U(x) = p(EX1,...,BEXp) + > ai(w; — EX;)

i=1

so that ¢(z) > 9(x) for all z. Taking expected values now and using (3.1c)
now gives the desired result.

3.5. (i) Let P(X = a) = P(X = —a) = b?/242, P(X =0) =1 — (b*/a?).
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(ii) As @ — oo we have a21(|X‘2a) — 0 a.s. Since all these random variables
are smaller than X2, the desired result follows from the dominated convergence
theorem.

3.6. (i) First note that EY = EX and var(Y) = var(X) implies that EY? =
EX? and since ¢(z) = (z+b)? is a quadratic that Ep(Y) = Ep(X). Applying
(3.4) we have

P(Y > a) < Bp(Y)/(a+b)> = Bo(X)/(a+b)> = p

(ii) By (i) we want to find p, b > 0 so that ap—b(1—p) = 0 and a®’p+b3(1—p) =
02. Looking at the answer we can guess p = 02/(0? + a?), pick b = 02 /a so
that EX = 0 and then check that EX? = o2.

3.7. () Let P(X =n)=P(X =-n)=1/2n?, P(X =0)=1—1/n? forn > 1.
(ii) Let P(X =1—¢)=1—1/nand P(X =1+b) =1/n for n > 2. To have
EX =1, var(X) = 02 we need

—e(1—=1/n)+b(1/n) =0 (1 —1/n)+b*(1/n) =o?
The first equation implies € = b/(n — 1). Using this in the second we get

b2

n—1

1

2 _ 2
=b n(n—1)

1
o + 2= =
n

3.8. Cauchy-Schwarz implies
(EY1iysa)® < EY?P(Y > a)

The left hand side is larger than (EY — a)? so rearranging gives the desired
result.

3.9. EX2/* = n*(I/n—1/(n+1))=n/(n+1) < 1. fY > X, for all n then
Y > n®on (1/(n+1),1/n) but then EY > > > n*!/(n+ 1) = oo since
a>1.

3.10. If g = 1 4 this follows from the definition. Linearity of integration extends
the result to simple functions, and then monotone convergence gives the result
for nonnegative functions. Finally by taking positive and negative parts we get
the result for integrable functions.

3.11. To see that 14 = 1 — [];; (1 — 14,) note that the product is zero if and
only if w € A; some i. Expanding out the product gives

n

1-JO=1a) =) 14, = 1ada, -+ ()" ] 14,
i=1 j=1

i=1 i<j

5



Chapter 1 Laws of Large Numbers

3.12. The first inequality should be clear. To prove the second it suffices to

show .
1a 2 Z 1a;, — Z 14,14,
=1

i<j
To do this we observe that if w is in exactly m of the sets A; then the right

hand side is m — (7;1) which is < 1 for all m > 1. For the third inequality it
suffices to show

154 < Z 1a, — Z Ta;1a; + Z 1a;14,14,
=1

i<j i<j<k

This time if w is in exactly m of the sets A; then the right hand side is

m(m — 1) n m(m —1)(m —2)
2 6
We want to show this to be > 1 when m > 1. When m > 5 the third term is

> the second and this is true. Computing the value when m = 1,2, 3,4 gives
1,1,1,2 and completes the proof.

3.13.1f 0 < j < k then |zJ/ < 1+ |2|F so E|X|* < oo implies E|X|/ < co. To
prove the inequality note that ¢(x) = |2|*/7 is convex and apply (3.2) to | X|7.

3.14. Jensen’s inequality implies ¢(EX) < Ep(X) so the desired result follows
by noting Ep(X) = _; p(m)ym and

n

p(EX) = exp <Z p(m) logym> = H ygl(m)
m=1

m=1

315. Let V,, = X;, + X;. Then Y,, > 0 and ¥,, T X + X, so the monotone
convergence theorem implies F(X, + X; ) T E(X + X; ). Using (3.1a) now
it follows that £X,, + EX; T EX + EX; . The assumption that EX; < oo
allows us to subtract EX; and get the desired result.

3.16. (y/X)1(x>y) < 1 and converges to 0 a.s. as y — oo so the first result
follows from the bounded convergence theorem. To prove the second result, we
use our first observation to see that if 0 <y < e

Ey/X; X >y) <PO<X <e)+Ey/X;X >e¢)

On {X > €}, y/X < y/e <1 and y/X — 0 so the bounded convergence
theorem implies

limsup E(y/X; X >y) < P0< X <e¢)
y—0
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and the desired result follows since € is arbitrary.

3.17. Let Yy = Zﬁ[:o X,. Using the monotone convergence theorem, the lin-
earity of expectation, and the definition of the infinite sum of a sequence of
nonnegative numbers

E <Z Xn> =E lim Yy = lim EYy
n=0 e

N—o0
N oo
= lim Y EX,=> EX,
n=0 n=0

3.18. Let Y,, = |X|14,. Jensen’s inequality and the previous exercise imply

iIE(X;An)I < iEYn :EiYn < E|X| < oo

n=0 n=0 n=0

Let B, = Ul _yAm, and X,, = X1p . Asn — o0, X1p, — X14 and E|X| <
oo so the dominated convergence theorem and the linearity of expectation imply

E(X;A) = lim E(X;B,) = lim » E(X;A,)
m=0

1.4. Independence

4.1. (i) If A € 0(X) then it follows from the definition of o(X) that A = {X €
C'} for some C € R. Likewise if B € 0(Y) then B ={Y € D} for some D € R,
so using these facts and the independence of X and Y,

P(ANB)=P(X € C,Y € D) = P(X € C)P(Y € D) = P(A)P(B)

(if) Conversely if X € F, Y € G and C,D € R it follows from the definition
of measurability that {X € C} € F, {Y € D} € G. Since F and G are
independent, it follows that P(X € C,Y € D) = P(X € C)P(Y € D).

4.2. (i) Subtracting P(AN B) = P(A)P(B) from P(B) = P(B) shows P(A°N
B) = P(A°)P(B). The second and third conclusions follow by applying the
first one to the pairs of independent events (B, A) and (A, B).

(i) If C,D € R then {14 € C} € {0, A, A°,Q} and {15 € D} € {0, B, B, Q},
so there are 16 things to check. When either set involved is ) or Q the equality
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holds, so there are only four cases to worry about and they are all covered by
(i)-

4.3. (i) Let By = A§ and B; = A, fori > 1. If I C {1,...,n} does not contain 1
it is clear that P(NierB;) = [[;c; P(B;). Suppose now that 1 € I and let J =
I— {1} Subtracting P(ﬂzejAl) = Hie] P(Al) from P(m’LGJAZ) = H P(Al)
giVGS P(Ai n ﬂiEJAi> = P(Ai) HiEJ P(Al)

(ii) Iterating (i) we see that if B; € {4;, AS} then By,..., B, are independent.
Thus if C; € {A;, A, Q} P(N,C;) = [[i, P(C;). The last equality holds
trivially if some C; = ), so noting 14, € {0, 4;, A5, Q} the desired result follows.

icJ

4.4.Let ¢y, = [ g(@p) dxp,. If some ¢, = 0 then g,, = 0 and hence f =0 a.e., a
contradiction. Integrating over the whole space we have 1 =[] _, ¢y, so each
Cm < 00. Let fin(2) = gm(2)/cm and Fo(y) = [Y__ fm(x) da for —oo < 2 < oo.
Integrating over {z : T, < ym,l <m < n} we have

P(Xm < g1 <m <n) = [] Fnlym)
m=1

Taking yi = oo for k # m, it follows that F,(ym) = P(Xm < ym) and we have
checked (4.3).

4.5. The first step is to prove the stronger condition: if I C {1,...,n} then
P(X;=a5icl) = HP(XZ- =)
il
To prove this, note that if |[I| = n —1 this follows by summing over the possible

values for the missing index and then use induction. Since P(X; € Sf) =0, we
can check independence by showing that if A; C S; then

P(Xi€ Ai,1<i<n)=]]P(Xi€A)
i=1

To do this we let A; consist of Q and all the sets {X; = z} with « € S;. Clearly,
Aj; is a m-system that contains Q. Using (4.2) it follows that o (A1), ...,0(Ay)
are independent. Since for any subset B; of S;, {X; € B;} is in o(A;) the
desired result follows.

46. EX, = fol sin(2mnx) dz = —(2mn) ! cos(2mnx)|§ = 0. Integrating by parts
twice

1
EXpn X, = / sin(2rme) sin(2mnx) dz
0

1
= m/ cos(2mrma) cos(2mnz) dx
nJo

m2 1
=— / sin(2rma) sin(2mnx) dz
n= Jo



Section 1.4 Independence

soif m #n, EX,, X, = 0. To see that X,,, and X,, are not independent note
that X,,(z) = 0 when = = k/2m, 0 < k < 2m and on this set X,,(x) takes
on the values V;, = {yo,¥1,-..Y2m-1}. Let [a,b] C [-1,1] — V with a < b.
Continuity of sin implies that if € > 0 is sufficiently small, we have

P(X, € [0,¢], X, € [a,0]) = 0 < P(X,, € [0,¢]) P(X,, € [a,b])

4.7. (i) Using (4.9) with z = 0 and then with z < 0 and letting z 7 0 and using
the bounded convergence theorem, we have

mx+ygm=/FFWw@

P(X+Y <0)= /F(—y—)dG(y)
where F(—y—) is the left limit at —y. Subtracting the two expressions we have

PX+Y =0)= /u({—y})dG(y) = > u{-yhv({y})

since the integrand is only positive for at most countably many y.
(ii) Applying the result in (i) with Y replaced by —Y and noting u({z}) =0
for all x gives the desired result.

4.8. The result is trivial for n = 1. If n > 1, let Y7 = X7 + --- + X,,_1 which
is gamma(n — 1, A) by induction, and let Y2 = X,, which is gamma(1, ). Then
use Example 4.3.

4.9. Suppose Y7 = normal(0, a) and Y3 = normal(0,b). Then (4.10) implies

1 2 2
—z°/2a ,—(z—x) /2bd
Z) = (& € i
fY1+Y2( ) 2 /_b/

Dropping the constant in front, the integral can be rewritten as

/ b2 + az? — 2azxz + az?
exp | — dx
2ab

/e a+b | , 2a n a o d
= xp | — T ——xz+ —— 2z T
P 2ab a+b a+b
a+b a ? ab 9
_/exp(— 5ab {(I_a—l-bz)—’—(a—l-b)Qz}) dx

9
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since —{a/(a+b)}*> + {a/(a +b)} = ab/(a + b)?. Factoring out the term that
does not depend on z, the last integral

=ex —272 /ex _atb z— -2 22 dz
- 2(a+0) P 2ab a+b

= exp <_2(:71b)> 2rab/(a + b)

since the last integral is the normal density with parameters p = az/(a + b)
and 02 = ab/(a + b) without its proper normalizing constant. Reintroducing
the constant we dropped at the beginning,

2,2
fY1+Y2 (Z) = #\/E\/mexp (_7)

2(a+0b)

4.10. It is clear that h(p(z,y)) is symmetric and vanishes only when = = y. To
check the triangle inequality, we note that

o(z,y) p(y,2)
h(p(z,y)) + h(p(y 2)) = / W () du + / W (u) du

p(z,y)+p(y,z)
> / R (u) du
0

p(@,2)
> / W (u) du = h(p(z, 2))

the first inequality holding since k' is decreasing, the second following from the
traingle inequality for p.

411. 1 C, D € R then f~1(C),g~1(D) € R so

P(f(X)eC,g(Y)e D)=P(X € f71(C),Y € g (D))
=P(X € [~ (C))P(Y €g (D))
P(f(X) e C)P(g(Y) € D)

4.12. The fact that K is prime implies that for any ¢ > 0
{{jmod K:0<j<K}={0,1,... K — 1}

which implies that for any m > 0 we have P(X+mY =i) =1/K for 0 <i < K.
If m < n and £ = n —m our fact implies that if 0 < m < n < K then for each



Section 1.4 Independence

0 < 1,5 < K there is exactly one pair 0 < z,y < K so that z + my = ¢ and
x + ny = j. This shows

P(X+mY =i, X +nY =j)=1/K?>=P(X +mY =4i)P(X +nY = j)
so the variables are pairwise independent.
4.13. Let X3, X2, X3, X4 be independent and take values 1 and —1 with prob-
ab1l1ty 1/2 each. Let }/1 = X1X2, }/2 = X2X3, }/3 = X3X4, and Y4 = X4X1.
It is easy to see that P(Y; = 1) = P(Y; = —1) = 1/2. Since V1Y2Y3Y, = 1,
PY1 =Y, =Y3 =1,Y; = —1) = 0 and the four random variables are not
independent. To check that any three are it suffices by symmetry to consider
}/17}/25}/3' Let 7;171'271'3 S {_17 1}

P(Y1 =11,Ys =id2,Y3 =i3) = P(Xa = i1 X1, X3 = 12X, X4 = i3X3) = 1/8

= P(Y1 = i1)P(Yz = i2) P(Ys = i3)

4.14. Let A; consist of the set {1, 2} and Az consist of the sets {1,3} and {1,4}.
Clearly A; and Az are independent, but o(Az) = the set of all subsets so o(A;)
and o(Az) are not independent.

415. {X +Y =n} = Un{X =m,Y =n—m}. The events on the right hand
side are disjoint, so using independence

P(X+Y =n)=Y» P(X=mY=n—m)=Y_ P(X=m)P(Y=n-m)

4.16. Using 4.15, some arithmetic and then the binomial theorem

)\m
P(X+Y=n)= Ze_A—e_“ K

m! (n —m)!

n—m

m=0
n
!
M) L -
n! m!(n —m)!
m=0

(A ) (:u + /\)n
n!

_ 6_( )\mun—m

267

4.17. (i) Using 4.15, some arithmetic and the observation that in order to pick
k objects out of n + m we must pick j from the first n for some 0 < j < k we

have
k

P(X+Y =k)=)_ (?)pj(l —p)n (kﬂjj>pkj(1 — pym—(k=3)

J=0

— (1 - p)"*’”"“é (?) (sz])

n+m n+m—
—( . >p’“(1—p)+ §

11
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(ii) Let &1, &a, . . . be independent Bernoulli(p). We will prove by induction that
Sp =& + - -+ &, has a Binomial(n, p) distribution. This is trivial if n = 1. To
do the induction step note X = S,,_1 and Y =&, and use (i).

4.18. (a) When k = 0,1,2,3,4, P(X +Y = k) = 1/9,2/9,3/9,2/9,1/9.
(b) We claim that the joint distribution must be

xX\Y 0 1 2
2 a 2/9—a 1/9
1 2/9—a 1/9 a
0 1/9 a 2/9—a

where 0 < a < 2/9. To prove this let a;; = P(X =4,Y =j). P(X+Y =0) =
1/9 implies agp = 1/9. Let ag1 = a. P(X = 0) = 1/3 implies ap2 = 2/9 — a.
P(X +Y =1)=2/9 implies a1 = 2/9 —a. P(Y =0) = 1/3 implies azy = a.
P(X+Y =2) = 1/3 implies a;; = 1/9. Using the fact that the row and column
sums are 1/3 one can now fill in the rest of the table.

4.19. If we let h(x,y) = 1(zy<z) in (4.7) then it follows that
P(XY < 2) = / / Layes dF(2) dG(y) = / F(z/y) dG(y)

4.20. Let iy, i,...,in € {0,1} and 2 = 32" _ ip,27™

m=1

P(Yi=i1,....Yy =in) = Pw€ [z,z+27")=2""

1.5. Weak Laws of Large Numbers

5.1. First note that var(X,,)/m — 0 implies that for any ¢ > 0 there is an
A < o0 so that var(X,,) < A+ em. Using this estimate and the fact that

YoM <Y 2m—1=n?
1 n
E(Sy/n—vy,)? = = Z var(X,,) < A/n+e
m=1

Since € is arbitrary this shows the L? convergence of S, /n — v, to 0, and
convergence in probability follows from (5.3).

5.2. Let € > 0 and pick K so that if k£ > K then r(k) < e. Noting that Cauchy
Schwarz implies EX; X; < (EX?EX?)'/? = EX}? = r(0) and breaking the sum
into |i — j| < K and |i — j| > K we have

ES2= Y EX;X; <n(2K + 1)r(0) + n’e

1<i,j<n
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Dividing by n? we see limsup E(S,/n?) < e. Since € is arbitrary we have
Sn/n — 0 in L? and convergence in probability follows from (5.3).

5.3. (i) Since f(Uy), f(Uz),... are independent and have E|f(U;)] < oo this
follows from the weak law of large numbers, (5.8).
(i) P(|I, — I| > a/n'/?) < (n/a®)var(1,) = 0% /a® where 0® = [ f2 — ([ f)?

5.4. Replacing log k by logn we see that

= c C

<
5 <
it k?logk — nlogn

P(|X;| >n) <

so nP(|X;| > n) — 0 and (5.6) can be applied.
E|Xi| =) C/kloghk = oo
k=2

but the truncated mean

k k
pn = EXil(x, <) = Y_(~1) kloghk 2 (-1 klog k
k=2 k=2

since the latter is an alternating series with decreasing terms (for k > 3).

5.5. nP(X; > n) =e¢/logn — 0 so (5.6) can be applied. The truncated mean

e

tn = EXil(x,1<n) = / dx = eloglog x| = eloglogn

xlogx
so S, /n — eloglogn — 0 in probability.

5.6. Clearly, X = fo:l 1 =317 1(x>n) so taking expected values proves (i).
For (ii) we consider the squares [0, k]* to get X? = >>° (2n — 1)1 (x>, and
then take expected values to get the desired formula.

5.7. Note H(X) = [%_h(y)1(x>y) dy and take expected values.

oo

5.8. Let m(n) = inf{m : 2=™m=3/2 < n=1} b, = 2", Replacing k(k+ 1) by
m(m + 1) and summing we have

= 1 2-m
P(X;, >2™) < =
(X >27) < k;ﬂ 2km(m+1) m(m+1)

nP(X; > by) <027 fm(n) (m(n) +1) < (m(n) +1)72 = 0

13
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To check (ii) in (5.5) now, we let X = X1(x|<2mm) and observe

m(n)

~ 1
EX? <1+ ) 2%
k=1

% k(k + 1)

To estimate the sum divide it into & > m(n)/2 and 1 < k < m(n)/2 and replace
k by the smallest value in each piece to get

m(n)/2 4 m(n)
<14+ Y 2 —— Y ok
- mn)?

k=1 k=m(n)/2

<142-2mM/2 L g 9m™) iy (n)2 < €2 /m(n)?

Using this inequality it follows that

nEX? < c2mn) n__ C 0
. —
b2 = m(n)2 22m(0) = p(n)l/2
The last detail is to compute
a, =E(X)=— i (2]C —1);
2kk(k +1)
k=m(n)+1
> 1 1 ) > 1
- Z (_ “rx1) T Z (k1)
k=m(n)+1 & kt1 k=m(n)+1 2 k(k + 1)

B L i 1 1 1
 m(n)+1 M= 2kk(k 4+ 1) m(n) logy

From the definition of b, it follows that 27" ~1 < n/m3/2 ~ n/(log, n)3/? so
(5.5) implies
Sy +n/logyn
_—
n/(logyn)3/?

5.9. nu(s)/s — 0 as s — oo and for large n we have nu(1) > 1, so we can define
b, = inf{s > 1: nu(s)/s < 1}. Since nu(s)/s only jumps up (at atoms of F),
we have nu(b,) = b,. To check the assumptions of (5.5) now, we note that
n = by /u(by) so

bn(1 — F (b, 1
’nP(|Xk| >bn): ( " ( )) = b — 0
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since b,, — 0o as n — o0o. To check (ii), we observe

bn
| @) < bt = 82
0
So using (5.7) with p =2

7 22(1 — F(x)) da B
fob" w(x) dx

since v(s) — oo as s — oo. To derive the desired result now we note that
an = np(by) = by.

b;2nEX721,k S

1.6. Borel-Cantelli Lemmas

6.1. Let ¢ > 0. Pick NV so that P(]X| > N) < ¢, then pick § < 1 so that if
2,y € [-N+1,N+1] and |z —y| < ¢ then |f(z) — f(y)] <e.

P(If(Xn) = f(X)] > €) < P(IX] > N) + P(IX = Xp| > )

so limsup,, . P(|f(Xn) — f(X)] > €) < e. Since € is arbitrary the desired
result follows.

6.2. Pick ny so that FX,, — liminf, .. FX,. By (6.2) there is a further
subsequence X, (y,,) so that Xn(mk) — X a.s. Using Fatou’s lemma and the
choice of ny it follows that

EX < likm inf EX,, () = liminf EX,,

n—oo

6.3. If X,,(n) is a subsequence there is a further subsequence so that X,,,,, ) —
X a.s. We have EX,,(,,,,) — EX by (a) (3.7) or (b) (3.8). Using (6.3) it follows
that EX,, — EX.

6.4. Let o(z) = |2]/(1 + |z]). (i) Since p(2) > 0for z # 0, Ep(|X —=Y|) =0
implies p(]X —Y]) =0 a.s. and hence X =Y a.s. (ii) is obvious. (iii) follows
by noting that Exercise 4.10 implies (| X —Y|)+¢(|Y — Z|) > ¢(|X — Z|) and
then taking expected value. To check (b) note that if X,, — X in probability
then since ¢ < 1, Exercise 6.3 implies d(X,,, X) = Ep(|X,, — X|) — 0. To prove
the converse let € > 0 and note that Chebyshev’s inequality implies

P(X, — X|>¢) <d(X,,X)/p(e) =0

15
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6.5. Pick Ny so that if m,n > Nj then d(X,,, X,) < 27 Given a subsequence
X, (m) Pick my, increasing so that n(my) > Nj. Using Chebyshev’s inequality
with ¢(z) = z/(1 + z) we have

P(|Xn(mk) - Xﬂ(mk+1)| > k72) S (k2 + 1)271c

The right hand side is summable so the Borel-Cantelli lemma implies that for
large k, we have | X, () — Xp(me, )| < k72 Since Y, k™2 < oo this and
the triangle inequality imply that X, (,) converges a.s. to a limit X. To see
that the limit does not depend on the subsequence note that if Xn/(m;c y = X'
then our original assumption implies d(Xp, (), Xn/(m;)) — 0, and the bounded
convergence theorem implies d(X, X’) = 0. The desired result now follows from
(6.2).

6.6. Clearly, P(Um>nAm) > maxm,>, P(An). Letting n — oo and using (iv)
of (1.1), it follows that P(limsup A,,) > limsup P(A,,). The result for liminf
can be proved be imitating the proof of the first result or applying it to A¢,.

6.7. Using Chebyshev’s inequality we have for large n

) < var(X,,) Bn”
~ 02(EX,)? T 62(a?/2)n3

P(|X, - EX,| > éEX, = Cnf=2

If we let ng = [k2/(2a*5)] + 1 and T} = X,,, then the last result says
P(|Ty, — ETy| > §ETy) < Ck™?

so the Borel Cantelli lemma implies Tj/ETy, — 1 almost surely. Since we have
ETy41/ETy, — 1 the rest of the proof is the same as in the proof of (6.8).

6.8. Exercise 4.16 implies that we can subdivide X,, with large \,, into several
independent Poissons with mean < 1 so we can suppose without loss of general-
ity that A\, < 1. Once we do this and notice that for a Poisson var(X,,) = EX,,
the proof is almost the same as that of (6.8).

6.9. The events {{,, = 0} = {X,, = 0} are independent and have probability
1/2, so the second Borel Cantelli lemma implies that P(¢, = 0i.0.) = 1. To
prove the other result let 1 = 1 ro = 2 and r,, = r,—1 + [logyn]. Let A, =
{X,, = 1forrp1r < m < r,}. P(A,) > 1/n, so it follows from the second
Borel Cantelli lemma that P(A,, i.0.) = 1, and hence ¢, > [log,n] i.0. Since
rn, < nlogy, n we have

E"‘n []‘Og2 n]
logy(rn) — logy n + logy logy n
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infinitely often and the desired result follows.

6.10. Pick €,, | 0 and pick ¢, so that P(|X,,| > enc,) < 27" Since ), 27" < o0,
the Borel-Cantelli lemma implies P(|X,,/c,| > €, i.0.) = 0.

6.11. (i) Let B,, = A% N A,,+1 and note that as n — oo

o0

P(Un_yAm) < P(An) + Y P(Bm) =0

(ii) Let A, = [0,€,) where €, | 0 and >~ €, = co. The Borel-Cantelli lemma
cannot be applied but P(A,) — 0 and P(AS N A,41) =0 for all n.

6.12. Since the events AS, are independent

P((oAn) = [ (1 - P(An))

m=1

If P(Uy,Ap) = 1 then the infinite product is 0, but when P(4,,) <1 for all m
this imples > P(A,,) = oo (see Lemma) and the result follows from the second
Borel-Cantelli lemma.

Lemma. If P(A,,) <1 for all m and ), P(A,,) < oo then

] (1-P(A,) >0

m=1

To prove this note that if >_;_, P(A;) <1 and 7, = [[;—,(1 — P(Ax)) then

1—m, = Zwm,l—ﬂ'm SZP(Ak) <1
m=1 k=1

soif Y ° 1 P(Ay) <1then [[°_,,(1 — P(Ay)) > 0. If P(A,;,) <1 forallm

then Hf\f:l(l — P(Ay,)) > 0 and the desired result follows.

6.13. If > P(X, > A) < oo then P(X,, > Aio.) = 0 and sup, X,, < oo.
Conversely, if >~ P(X,, > A) = oo for all A then P(X,, > Aio.)=1forall A
and sup,, X,, = 00.

6.14. Note that if 0 < § < 1 then P(|X,| > 0) = pn. (i) then follows im-
mediately, and (ii) from the fact that the two Borel Cantelli lemmas imply
P(|X,| > 6 1i.0.)is 0 or 1 according as >, p, < 00 or = o0.

6.15. The answers are (i) E|Y;| < oo, (ii) EY;" < oo, (iii) nP(Y; > n) — 0, (iv)
P(Y;] < o0) = 1.

17
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(i) If E|Y;| < oo then ) P(|Y,| > én) < oo for all n so Y,/n — 0 as.
Conversely if E|Y;| = oo then ) P(|Y,| > n) = o0 so |Y,|/n>1 i.o.

(ii) If BY;" < oo then >, P(Y,, > dn) < oo for all n so limsup,,_,.. Y, /n <0
a.s., and it follows that maxi<m<n Y /n — 0 Conversely if EYi'|r = 00 then
> P(Y,>n)=00s0Y,/n>11io.

(i) P(maxi<m<n Ym > 0n) < nP(Y; > nd) — 0. Now, if nP(Y; > n) 4 0 we
can find a § € (0,1), nx — oo and my, < ny so that mpP(Y; > ny) — 6. Using
the second Bonferroni inequality we have

P< max Ym>nk) kaP(Yi>nk)—<W;k>P(Yi>nk)2—>5—52/2>0

1<m<my

(iv) P(|Y,|/n > 8) = P(|Yn] > né) — 0 if P(|Yi] < c0) = 1.

6.16. Note that we can pick 4, — 0 so that P(|X,, — X| > J,) — 0. Let
w € Q with P(w) = p > 0. For large n we have P(|X,, — X| > d,) < p/2 so
| Xn(w) = X(w)| <6, — 0. If Qo = {w: P({w}) > 0} then P(y) = 1 so we
have proved the desired result.

6.17. If m is an integer P(X,, > 2™) = 27™%1 g0 taking z,, = log,(Kn log,n)
and my, = [z,] +1 < z, + 1 we have P(X,, > 2%) > 27 = 1/Knlog,n.
Since >, 1/nlogyn = oo the second Borel Cantelli lemma implies that with
probability one X,, > 2%~ i.o. Since K is arbitrary the desired result follows.

6.18. (i) P(X, >logn) = 1/n and these events are independent so the second
Borel-Cantelli implies P(X,, > logn i.o.) = 1. On the other hand P(X, >
(1+ €)logn) = 1/n*¢ so the first Borel-Cantelli lemma implies P(X,, > (1 +
€)logn i.o.) =0.

(i) The first result implies that if € > 0 then X,, < (1 + €)logn for large n so
limsup,, ,.o My/logn < 1. On the other hand if e > 0

€

P(Mn < (1 — E) logn) = (1 _ n—(l—e))n <e M

which is summable so the first Borel-Cantelli lemma implies

P(M, <(1—¢)lognio.)=0

6.19. The Borel-Cantelli lemmas imply that P(X,, > Ayi.0. ) = 0 or 1 ac-
cording as ) P(Xp; > A\p) < 0o or = oo. If X, > A, infinitely often then
maxi<m<n Xm > Apn infinitely often. Conversely, if X,, < A, for large n > Ny
then for n > Ny we will have maxi<m<n Xm < Ay
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6.20. Let X,, = Zkgn 14, and Y, = X,,/EX,. Our hypothesis implies

limsup1/EY? = a

n—oo

Letting a = € in Exercise 3.8 and noting FY,, =1 we have
P(Y, >¢€) > (1—¢)?*/EY?
so using the definition of Y,, and Exercise 6.6 we have

P(A, i.0.) > P(limsup Y, > ¢) > limsup P(Y,, > ¢) > (1 — ¢)*a

1.7. Strong Law of Large Numbers

7.1. Our probability space is the unit interval, with the Borel sets and Lebesgue
measure. For n > 0, 0 < m < 2", let Xonyy, = 1 on [m/2", (m + 1)/2"),
0 otherwise. Let N(n) = 2™ + m on [m/2",(m + 1)/2™). Then X; — 0 in
probability but Xy, = 1.

72.Let S, = X4+ -+ X, T, =Y1+---+Y,,and N(t) = sup{n : Sp,+T, < t}.

SN(t) < Ry < SN(t)+1
Sniy+r1tTnw+1 — t 7 Svey + T

To handle the left-hand side we note

S
N(t) N@#)+1 - N() —>EX1-;-1
N(t) Sneyt1+Inwmr N(Et)+1 EX; + EY:

A similar argument handles the right-hand side and completes the proof.

7.3. Our assumptions imply |X,,| = Uy - - - U,, where the U; are i.i.d. with P(U; <
r)=r2for0<r<1.

1 1 &
Zlog|Xnl == logU, — ElogU,,
—log | Xy nz ogUp — Elog

m=1

by the strong law of large numbers. To compute the constant we note

1
ElogU, :/ 2rlogrdr:(r210gr—r2/2)|;:—1/2
0

19
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7.4. (i) The strong law of large numbers implies
n~log W, — c(p) = Elog(ap + (1 — p)Va)

(ii) Differentiating we have

=8 (i) 0B (Gia ) <°

(iii) In order to have a maximum in (0,1) we need ¢/(0) > 0 and ¢/(1) < 0, i.e.,
aE(1/V,) > 1 and EV, > a.

(iv) In this case E(1/V) =5/8, EV = 5/2 so when a > 5/2 the maximum is at
1 and if @ < 8/5 the maximum is at 0. In between the maximum occurs at the

p for which
1 a—1 +1 a—4 B
2 ap+(1—p) 2 ap+4(1—p)
o a—1 4—a
r

(a=Dp+1  (a—4)p+4
Cross-multiplying gives
(a=1D)(a—4)p+4la-1)=A—-a)la—1)p+(4—a)
and solving we have p = (5a — 8)/{2(4 — a)(a — 1)}. It is comforting to note

that this is 0 when a = 8/5 and is 1 when a = 5/2.

1.8. Convergence of Random Series

8.1. It suffices to show that if p > 1/2 then limsup,,_, ., S,/n? <1 a.s., for then
if g >p, S,/n? — 0. (8.2) implies

)* <n<me

P (( nax [Sn| > mo‘p> < Cm® /m**P

When a(2p — 1) > 1 the right hand side is summable and the desired result
follows from the Borel-Cantelli lemma.

8.2. E|X|P = oo implies 307 | P(|X,,| > n'/P) = oo which in turn implies that
|X,,| > n'/? i.0. The desired result now follows from

masc{|Sy_1], [Sul} > |Xa]/2
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8.3.Y,, = X, sin(nnt)/n has mean 0 and variance < 1/n?. Since > >~ var(¥,,) <Jj
oo the desired result follows from (8.3).

8.4. (i) follows from (8.3) and (8.5). For (ii) let
P(X,=n)=P(X,=-n)=02/2n> P(X,=0)=1-02/n?

oo 02/2n* = oo implies P(X,, > ni.o.) = 1.

8.5. To prove that (i) is equivalent to (ii) we use Kolmogorov’s three series
theorem (8.4) with A = 1 and note that if ¥;, = X, 1(x,<1) then var(Y;) <
EY2 < EY,. To see that (ii) is equivalent to (iii) note

X, 2X,
<X,l 1 <
1+x, = (x.<1) t1x,>1) < 1+ X,

8.6. We check the convergence of the three series in (8.4)

D OP(IXnl > 1) < EXn[l(x, 51 < 00
n=1

n=1

Let Yn = an(\Xn\Sl)' EXn =0 implies EY, = _EXn1(|Xn\>1) SO

D IBY, <Y EIXnll(x,51) < o0
n=1 n=1
Last and easiest we have

ZV&I(YH) < ZElX"Pl(\Xn\Sl) < o0
n=1

n=1

8.7. We check the convergence of the three series in (8.4).
S P(IXn > 1) <Y E[X, [P < oo
n=1 n=1

Let Y, = X,1(x, <. I 0 < p(n) <1, |Y,| < |X,|P™ so |[EY,| < E|X,[P™.
If p(n) > 1 then EX,, = 0 implies EY,, = —EX,1(1x,|>1) S0 we again have
|EY,| < E|X,|P(™ and it follows that

i |EY,| < i E|X,|P™ < oo
n=1 n=1
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Last and easiest we have

D var(yy) < iEYn? < imxnv’(") < o0
n=1

=1

3
Il
—
3

8.8. If Elog™ |X1| = oo then for any K < oo, 307, P(log™ |X,,| > Kn) = oo,
so | X,| > eX™ i.0. and the radius of convergence is 0.

If Elog™ |X1| < oo then for any € > 0, > o P(log* |X,| > en) < oo, so
| X,| < e ™ for large n and the radius of convergence is > e~¢. If the X,, are
not =0 then P(|X,| > d io0.)=1and > =, |X,| 1" = occ.

8.9. Let Ax = {|Sm.x| > 2a,|Sm ;| < 2a,m < j < k} and let G = {|Sk,n| <
a}. Since the Ay are disjoint, Ay NG C {|Sm,n| > a}, and Ay and Gy are
independent

n

P(|Smnl >a) > > P(A:NGy)

k=m+1
= > P(Ay)P(Gy) > mfillicrénp(Gk) > P(Ay)
k=m+1 k=m+1

8.10. Let Sk, = S, — Sk. Convergence of S, to S in probability and Sk ,| <
|Sk - Sool + |Soo - Sn| imply

min P(|Sgn| <a)—1
m<k<n

as m,n — oo. Since P(|Sm,n| > a) — 0, (x) implies

P( max | S 5| > 2a) —0

m<j<n

As at the end of the proof of (8.3) this implies that with probability 1, Sy, (w)
is a Cauchy sequence and converges a.s.

8.11. Let Sk,n = Sy — Sk. Convergence of S, /n to 0 in probability and Sk, | <
|Sk| + |Sn| imply that if € > 0 then

i <
oin P(|Skn| < ne) —1

as n — oo. Since P(]|Sy| > ne) — 0, (x) with m = 0 implies

P < max |S;| > 2ne) -0
0<j<n
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8.12. (i) Let Sk, = Sn — Sk. Convergence of S,,/a(n) to 0 in probability and
|Sk,el < |Sk| 4 |Se| imply that if € > 0 then

o min P(|Sien] < ea(27) =1

as n — oo. Using (*) now we see that if n is large

P < max  |Son-1 ;| > 26a(2”)) < 2P(|S3n-1 90| > €a(2"))

2n—1<j§2n

The events on the right hand side are independent and only occur finitely often
(since San/a(2™) — 0 almost surely) so the second Borel Cantelli lemma implies
that their probabilities are summable and the first Borel Cantelli implies that
the event on the right hand side only occurs finitely often. Since a(2")/a(2"1)
is bounded the desired result follows.

(ii) Let a,, = n'/?(log, n)'/?*¢. Tt suffices to show that S, /a,, — 0 in probability
and S(27)/2"/?n!/?t¢ — 0 almost surely. For the first conclusion we use the
Chebyshev bound

0,2

P(|Sn/an < BES?)(82a2) = — 0
(180/an| > 8) < BS2/(6%02) = T
Noting a(2") = 2™/2n'/?*¢ we have

P(|S(2n)| > 52n/2n1/2+e) < 0,2572,”71725

and the desired result follows from the Borel-Cantell lemma.
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1.9. Large Deviations

9.1. Taking n = 1 in (9.2) we see that y(a) = —oo implies P(X; > a) = 0.
If S, > na then X,, > a for some m < n so (b) implies (c). Finally if
P(S,, > na) = 0 for all n then y(a) = —o0.

9.2. Suppose n = km where mA is an integer.
P(Sp > n{Xa+ (1 =A)b}) > P(Spx > nAa)P(Spa—x) > n(l — A)b)
Taking (1/n)log of both sides and letting k — oo gives
A+ (1= W)b) = M(a) + (1 — Ny (d)

If, without loss of generality a < b then letting ¢,, T A where g, are rationals and
using monotonicity extends the result to irrational A. For a concave function
f, increasing a or h > 0 decreases (f(a + h) — f(a))/h. From this observation
the Lipschitz continuity follows easily.

9.3. Since P(X < 2,) = 1, Ee?X < oo for all # > 0. Since Fy is concentrated
on (—o0, T, it is clear that its mean py = ¢’'(6)/p(0) < x,. On the other hand
if 6 > 0, then P(X >z, —6) = c5 > 0, Ee?X > ¢5e?(=9) and hence

emo—25)9

_ 05
cse(®o—0)0 e /es =0

1 10—25
Fyp(xo —20) = —/ e’ dF (x) <

—0o0
Since 0 > 0 is arbitrary it follows that py — z,.

9.4. If we let x have the standard normal distribution then for a > 0
P(S,, > na) = P(x > ay/n) ~ (ay/n) " exp(—a®n/2)

so (1/n)log P(S,, > na) — —a?/2.

9.5.

EefX = Z e e /n! = exp(e? — 1)

n=0

sok(0) =e’ — 1, ¢ (0)/p(0) = k'(0) = €Y, and 6, = loga. Plugging in gives

v(a) = —aby + K(0a) = —aloga +a — 1

9.6. 1+ < e” with z = () — 1 gives () < exp(p(#) — 1) To prove the other
inequality, we note that

0 _ —0 & 2n
e 22+€ :Z 9 <692

p(0) —1= ) =

n=1
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(9.3) implies P(S,, > na) < exp(—n{af — 36?}). Taking 6 = a/23 to minimize
the upper bound the desired result follows.

9.7. Since ~y(a) is decreasing and > log P(X = z,) for all a < z, we have only
to show that limsupy(a) < P(X = x,). To do this we begin by observing that
the computation for coin flips shows that the result is true for distributions that
have a two point support. Now if we let X; = z, — § when X; < z, — ¢ and
X; = 2, when z, — 0 < X; < x, then S, > S, and hence J(a) > v(a) but
¥(a) | P(X; = x,) = P(z, — 3§ < X; < x,). Since § is aribitrary the desired
result follows.

9.8. Clearly, P(S, > na) > P(Sp,—1 > —ne)P(X,, > n(a + €)). The fact that
EeX = oo for all § > 0 implies limsup,,_, . (1/n)log P(X,, > na) = 0, and the
desired conclusion follows as in the proof of (9.6).

9.9. Let p, = P(X; > (a+¢€)n). E|X;| < oo implies
i<n

P (maxXi > n(a+ 6)) <np, —0

and hence P(F,) = np,(1 —p,)"~! ~ np,. Breaking the event F}, into disjoint
pieces according to the index of the large value, and noting

P <|Sn1| < ne

m<aXXl- < n(a—l—e)) —0

by the weak law of large numbers and the fact that the conditioning event has
a probability — 1 the desired result follows.

25



2 Central Limit Theorems

2.1. The De Moivre-Laplace Theorem

1.1. Since log(1l + z)/x — 1 as @ — 0, it follows that given an € > 0 there is a
§ > 0 so that if || < § then (1 —e)z < log(l + ) < (1 + €)z. From this it is
easy to see that our assumptions imply

Z log(14¢jn) — A
j=1

and the desired result follows.

1.2. Applying Stirling’s formula to n! we have

2rnP (S, = n+m) = V2rne "n"t" /(n + m)!

-1
nln™ e k
~— = 14+ =
(n+m)! <kl_[ + n)
=1
Yo ko~ m? /2 so if m ~ z/n, Exercise 1.1 implies the quantity in parentheses

converges to exp(z?/2).

1.3. Using (1.2) and writing o(1) to denote a term that goes to 0 as n — oo we
have

1 k k -k k
— log P(Say, = 2k) = _nth log(1+—)— o log(1——)4o(1)
2n 2n n n

2n
1 1-—-
T g1 4+ @) = % log(1 — a)
2 2
when k/n — a. Now if k/n > a > 0 we have

n—k 1—a
P(Sy, =2k +2) = ———P(59, = 2k) < —— P(S2, = 2k
(52 A= R )< el )
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and summing a geometric series we have P(Sa, > 2k) < CP(Sa, = 2k).
1.4. P(S, = k) = e ™nF/k! and k! ~ k*e=*\/21k so

k
P(S, = k) ~ e t* (ﬁ) N2k
k
and if k/n — a we have

1 -k Kk k
—1ogP(Sn:k)——n ——log(—>+o(1)—>a—1—aloga
n n

Now if k/n > a > 1 we have

1
P(Sy=k+1) = =5 P(Sy = k) < 2 P(S, = k)

and the result follows as in Exercise 1.3.
2.2. Weak Convergence

2.1. Let fp(z) =2if x € [m/2", (m+1)/2") and 0 < m < 2™ is an even integer.

22. Asn— o0

(i) P(M, <yn'/*) = (1 -y “n )" — exp(—y~*)
(i) P(M, < yn=7%) = (1 - |yl®n~1)" — exp(—|y/?)
(iii) P(M,, <logn+y) = (1 —e ¥n 1" — exp(—eY)

2.3. (i) From the asymptotic formula it follows that

. PXi>xz+(0/x) T 2 0. 20\ —
xlirxgo X, > ) = xlirgo Y exp(—0 — {0%/222}) = e7*

(ii) Let p, = P(X; > by, + (/b,)) and note that the definition of b,, and (i)
imply np, — e¢~% so

P(bn(Mn - bn) < x) =1 =p)" — exp(—e_m)
(iii) By (1.4) we have

1 1

PG> (2logn)) ~ fgp i

so for large n, b, < (2logn)'/2. On the other hand

1 logn

P(X; > {2logn — 2loglogn)}'/?) ~ (2logn)'/2 " n
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so for large n b, > (2logn —2loglogn)'/? From (ii) we see that if 2,, — oo and
Yn — —O0

Yn Tn
< — < — N
P(b M, — b, 5 ) 1

n n

Taking y,, yn = 0o(by,) the desired result follows.

2.4. Let Y, £ X,, with ¥, — Yoo a.s. 0 < g(V,) — g(¥ao) so the desired result
follows from Fatou’s lemma.

2.5. Let Y, £ X,, with ¥, — Yoo as. 0 < g(V,) — g(¥ao) so the desired result
follows from (3.8) in Chapter 1.

2.6. Let x5 = inf{z : F(z) > j/k}. Since F is continuous z;j is a continuity
point so Fy(z;r) — F(xjk). Pick Ny so that if n > Ny then |F,(x;x) —
F(zjr)| < 1/k for 1 < j < k. Repeating the proof of (7.4) in Chapter 1 now
shows sup,, |F,,(z) — F(x)| < 2/k and since k is arbitrary the desired result
follows.

2.7. Let X1, Xo,... be i.i.d. with distribution function F' and let

(7.4) implies that sup, |Fy,(z) — F(z)| — 0 with probability one. Pick a good
outcome wy, let z,, m = Xpm(wo) and ay m = 1/n.

2.8. Suppose first that integer valued X,, = X,. Since k + 1/2 is a continuity
point, for each k € Z

P(X, = k) = Fy(k+1/2) — Fu(k —1/2)
— F(k+1/2) - F(k —1/2) = P(Xoo = k)

To prove the converse let € > 0 and find points I = {z1,...x;} so that P(X €
I) > 1—e. Pick N so that if n > N then |P(X,, = 2;) — P(Xe = ;)| < €/5.
Now let m be an integer, let I,,, = I N (—o00, m], and let J,,, be the integers < m
not in I,,,. The triangle inequality implies that if n > N then

|P(Xpn € In) = P(Xeo € Ip)| < €

The choice of z1,...x; implies P(Xs € J,,) < € while the convergence for
all z; implies that P(X,, € J,,) < 2¢ for n > N. Combining the last three
inequalities implies |P(X,, < m) — P(Xo < m)| < 3e for n > N. Since € is

<
arbitrary we have shown P(X, < m) — P(X. < m). Since this holds for
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all integers and the distribution function is constant in between integers the
desired result follows.

2.9.If X,, — X in probability and g is bounded and continuous then Eg(X,) —
Eg(X) by (6.4) in Chapter 1. Since this holds for all bounded continuous
functions (2.2) implies X,, = X.

To prove the converse note that P(X,, < c+¢€) — 1 and P(X,, <c—¢€) — 0,
so P(|X,, —¢| > €) — 0, i.e., X, — c in probability.

210 If X,, <z—c—cand Y, <c+ethen X, +Y, <zso
PX,+Y,<z)>P(X,<x—c—¢€)— P, >c+e)

The second probability — 0. If x — ¢ — € is a continuity point of the distribution
of X the first probability — P(X < x — ¢ —¢). Letting € — 0 it follows that if
x is a continuity point of the distribution of X + ¢

liminf P(X,, +Y, <2) > P(X + ¢ < x)
P(X,+Y, <z)<PX,<z—c+e)+ P(Y, <c—e¢). The second probability
— 0. If t—c+e€is a continuity point of the distribution of X the first probability
— P(X <z —c+e€). Letting € — 0 it follows that

limsup P(X,, + Y, <2) < P(X +¢<x)

n—oo

2.11. Suppose that = > 0. The argument is similar if z < 0 but some details
like the next inequality are different.

P(X,Y, <z)>P(X, <z/(c+¢€)— P, >c+e)

The second probability — 0. If z/(c+¢) is a continuity point of the distribution
of X the first probability — P(X < x/(c+ ¢€)). Letting e — 0 it follows that if
x is a continuity point of the distribution of ¢X

liminf P(X,Y,, <z) > P(cX < x)
Let € < ¢. P(X,Y, <z) < P(X, <z/(c—¢€))+ P(Y, < c—e¢). The second
probability — 0. If /(¢ — €) is a continuity point of the distribution of X the
first probability — P(X < 2/(c —¢€)). Letting € — 0 it follows that

limsup P(X,,Y, <z) < P(cX <x)

n—oo
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2.12. The spherical symmetry of the normal distribution implies that the X¢
are unifrom over the surface of the sphere. The strong law of large numbers
implies Y;n/ > _ | Y2 — Y; almost surely so the desired result follows from
Exercise 2.9.

2.13. EY,? — 1 implies EY,’ < C so (2.7) implies that the sequence is tight.
Suppose fi, (k) = H, and let Y be a random variable with distribution u. Exer-
cise 2.5 implies that if « < 8 then EY® = 1. If we let v € («, 8) we have

EY" =1= (EY*)/*

so for the random variable Y and the convex function p(z) = (2)7/ we have
equality in Jensen’s inequality and Exercise 3.3 in Chapter 1 implies Y* =1
a.s.

2.14. Suppose there is a sequence of random variables with P(|X,,| > y) — 0,
EX? =1, and EX! < K. (2.7) implies that X,, is tight and hence there
is a subsequence X, ) = X. Exercise 2.5 implies that EXfl(k) — EX? but
P(|X]| <y) =1s0 EX? <y? <1 a contradiction.

2.15. First we check that p is a metric. Clearly p(F,G) = 0 if and only if F' = G.
It is also easy to see that p(F,G) = p(G, F). To check the triangle inequality
we note that if G(z) < F(x +a) + a and H(z) < G(z + b) + b for all z then
H(z) <F(x+a+0b)+a+bfor all x.

Suppose now that €, = p(F,, F) — 0. Letting n — oo in

Flx—¢€,) —€en < Fp(z) < F(z+e,) +en

we see that F,(z) — F(x) at continuity points of F. To prove the converse
let € > 0 and let x1,...,25 be continuity points of F so that F(x1) < e,
F(zg) >1—eand |z; — x| <efor 1 <j <k If F,, = F then forn > N
we have |F,(x;) — F(x;)| < e for all j. To handle the other values note that if
z; < < xjy1 then for n > N
Fo(z) < Fp(zjg) < Flzjp) +e < Flz+e) +e
Fo.(x) > Fy(zj) > F(zj) —e> F(z —¢) —¢
If © < z; then we note
Fo(z) < Fp(x1) < F(x1)+e<2e < F(z+ 2€) + 2¢
Fo,(z)>0>F(x—¢€)—¢
A similar argument handles x > x and shows p(F,,, F') < 2¢ for n > N.
2.16. To prove this result we note that

PY<z—€-P(X-Y|>)<P(X<2)<PY <a+e)+P(X-Y|>¢)
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2.17. If a(X,Y) = a then P(|X = Y| >a) > a > P(|X = Y| > a). The worst
case for the lower bound is P(|X — Y| =a) =a, P(|X —=Y|=0)=1—a. The
worst case for the upper bound is P(|X -Y|=a) =1—a, P(|X Y| = o0) = a.

2.3. Characteristic Functions

3.1.Rep = (p+9)/2 and |p|?> = ¢ - . If X has ch.f. ¢ then —X has ch.f. B,
so the desired results follow from (3.1g) and (3.1f).

3.2. (i) Using Fubini’s theorem and the fact that sin is odd

ﬂta/ p(dz) dt = /QT/ =) dt pu(dux)
:/ﬁchos(t(x—a))dtu(dx)

Now | g7 [*7 cos(t(z — ) df] < 1, and as T — oo

1 /7
o7 Tcos(t(x—a))dt—> {(1) iiz

so the bounded convergence theorem gives the desired result.
(ii) The periodicity follows from the fact that ™ = 1 for any integer n. From
this it follows easily that

T no[h
lim —/ e MTo(t)dt = — e Mp(t) dt
-T 2m —m/h

To see this note that when T" = 7n/h and n is an integer the integral on the
left is equal to the one on the right, and we have shown in (i) that the limit on
the left exists.

(i) The first assertion follows from (3.1e). Letting Y = X — b and applying
(ii) to py the ch.f. of Y

h w/h )
P(X=a)=PY =a—1b) = 2—/ e A=) oy () dt
T™J—x/h
h w/h

=— e oy (t) dt
2m —n/h

3.3. If X has ch.f. ¢ then —X has ch.f. ©. If ¢ is real ¢ = P so the inversion
formula (3.3) implies X < —X.
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3.4. By Example 3.3 and (3.1f), X; + X3 has ch.f. exp(—(o? + 03)t?/2).

3.5. Examples 3.4 and 3.6 have this property since their density functions are
discontinuous.

3.6. Example 3.4 implies that the X; have ch.f. (sint)/¢, so (3.1f) implies that
X144+ X, has ch.f. (sint/t)". When n > 2 this is integrable so (3.3) implies
that
1 [ ;
f(x)= 5 /_Oo(sint/t)"em” dt
Since sint and ¢ are both odd, the quotient is even and we can simplify the last
integral to get the indicated formula.

3.7. X — Y has ch.f. ¢ -3 = |¢|?. The first equality follows by taking a = 0 in
Exercise 3.2. The second from Exercise 4.7 in Chapter 1.

3.8. Example 3.9 and (3.1f) imply that X; + --- + X, has ch.f. exp(—n|t]),
so (3.1e) implies (X1 + -+ + X,,)/n has ch.f. exp(—|t|) and hence a Cauchy
distribution.

3.9. X,, has ch.f. ¢, (t) = exp(—0c2t?/2). By taking log’s we see that ¢, (1) has
a limit if and only if 02 — o2 € [0,00]. However 02 = oo is ruled out by the
remark after (3.4).

3.10. Let ¢, (t) = Ee’*X» and 9, (t) = Ee®®¥". Since X,, = X and Y, = Yo,
we have @n(t) — oolt) and ¥n(t) — Yoo(t). X + Yo has chif. @n(t)in(t)
which — oo (t)1eo (t). Being a product of ch.f., the limit is continuous at 0 and
the desired result follows from (ii) in (3.4).

3.11. (3.1f) implies S, = >°7_| X has ch.f. un(t) = [[j_; (). As n — oo,
Sp — Se a.s. So Exercise 2.9 implies S,, = S and (i) of (3.4) implies
Up — Uso, the ch.f. of Soo.

3.12. By Example 3.1 and (3.le), cos(t/2™) is the ch.f. of a r.v. X,, with
P(X,, = 1/2m) = P(X,, = —1/2™) = 1/2, so Exercise 3.11 implies So, =
> Xm has chuf. [T °_, cos(¢/2™). If we let Y, = (2 X,,, +1)/2 then

> 1 2Y, > "
Soc = <—2—m+2—m) = —1+2;Ym/z

m=1

The Y,, are i.i.d. with P(Y,, =0) = P(Y,, = 1) = 1/2 so thinking about binary
digits of a point chosen at random from (0,1), we see > °_ V;, /2™ is uniform
on (0,1). Thus S is uniform on (—1,1) and has ch.f. sint/¢ by Example 3.4.
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3.13. A random variable with P(X = 0) = P(X = a) = 1/2 has ch.f. (1+¢®)/2
so Exercise 3.11 implies X has ch.f.

<1+ezt23 7)

00 61277 J 00 ei2m37"
H<1+ )_H<1+ : )_@(ﬁ)
j m=1

H':j

3.14. We prove the result by induction on n by checking the conditions of (9.1)
in the appendix. To make the notation agree we write

o™ (2) = / (is)"e" u(ds)

so f(z,s) = (is)"e™*. Since |(is)"e™®| = [s|", E|X|* < oo then (i) holds.
Clearly, (ii) 0f/0x = (is)"*1e'®* is a continuous function of . The dominated
converence theorem implies

I — /(is)"“emu(ds)

is a continuous function so (iii) holds. Finally,

5 5
// 0f [0(y + 0, 5)] d@u(ds):/ EIX [ d6 < o0
_5 -6

so (iv) holds and the desired result follows from (9.1) in the Appendix.

3.15. p(t) = e /2 = =30 ,(=1)"t*"/(2™n!). In this form it is easy to see that
0 (0) = (=1)"(2n)!/(2"n!). The deisred result now follows by observing that
E|X|™ < oo for all n and using the previous exercise.

3.16. (i) Let X; be a r.v. with ch.f. ¢;. (3.1d) and (3.7) with n = 0 imply

pi(t + h) — @i(t)] < Ele” —1| < Emin(h|X;],2)
< E(h|X;];|X| < h7Y2) +2P(1X;| > h™Y/?)

The first expected value is < h'/2, the second term goes to 0 as h — 0 by
tightness.

(ii) Without loss of generality we can assume the compact set is [— K, K]. Let
€ > 0 and pick § > 0 so that if |h| < § then |p;(t + h) — ¢;(t)| < € for all 1.
Let m > 1/ be an integer. Since p,, — o pointwise we can find N large
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enough so that if n > N then |¢,(k/m) — voo(k/m)| < € for —Km < k < Km.
Combining the two estimates shows that if n > N then |¢, () — poo(t)] < 2¢
fort € [-K, K].

(iii) X,, = 1/n has ch.f. ¢®®/" that converges to 1 pointwise but not uniformly.

3.17. (i) Eexp(itSy/n) = o(t/n)". If ¢’ (0) = ia then n(p(t/n) — 1) — iat as
n — 00 5o p(t/n)" — €' the ch.f. of a pointmass at a, so S,/n = a and it
follows from Exercise 2.9 that S, /n — a in probability.

(ii) Conversely if p(t/n)" — e’ taking logarithms shows nlogp(t/n) — iat
and since log z is differentiable at z = 1 in the complex plane it follows that
n(p(t/n) — 1) — iat.

3.18. Following the hint and recalling cos is even we get

° 2(1 — cosyt)
o= [ e
0 it

Now integrate dF'(y) on both sides and use Fubini’s theorem on the right to get
the desired identity since Re p(t) = [ cos(yt) dF (y).

3.19. Since ¢(—t) = ¢(t), the hypothesis of (3.9) holds and it follows that
EX? < co. Using (3.8) now it follows that ¢(t) = 1+ iut — t20%/2 + o(t?) and
we have EX = 0 and E|X|? = —2c. If p(t) = 1+ o(t?) then ¢ =0 and X =0

3.20. (3.4) shows that Y;, = 0 implies ¢, (¢t) — 1 for all ¢. Conversely if
©n(t) — 1 for [¢t| < § then it follows from (3.5) that the sequence Y,, is tight.
Part (i) of (3.4) implies that any subsequential limit has a ch.f. that is =1 on
(—6,6) and hence by the previous exercise must be = 1. We have shown now
that any subsequence has a further subsequence that = 0 so we have Y,, = 0
by the last paragraph of the proof of (3.4).

3.21. If S,, converges in distribution then ¢, (t) = F exp(itS,) — ¢(t) which is
a ch.f. and hence has |p(t) — 1| < 1/2 for t € [—4,d]. If m < n let

Pmn(t) = Eexp(it(Sp — Sm)) = on(t)/em(t)

when ¢, (t) # 0. Combining our results we see that if m,n — oo then @, , — 1
for ¢ € [—4, 6]. Using the previous exercise now we can conclude that if m,n —
oo then S, — S,, — 0 in probability. Using Exercise 6.4 in Chapter 1 now we
can conclude that there is a random variable S,, with S,, — S in probability.

3.22. By Polya’s criterion, (3.10), it suffices to show that ¢(t) = exp(—t®) is
convex on (0,00). To do this we note

¢'(t) = —at* L exp(—t?)

(1) = (2872 — afa — 1)272) exp(—t)
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which is > 0 since o < 1.

3.23. (3.1f) implies that X; + - - - + X, has ch.f. exp(—n]t|*), so (3.1e) implies
(X1 +---+ X,,)/n"/* has ch.f. exp(—|t|*).

3.24. Let ¢a(t) = ¢1(t) on A, linear on each open interval that makes up A€,
and continuous. 9 is convex on (0, 00) and by Polya’s criterion must be a ch.f.
Since e~ Il is strictly convex we have {t : p(t) = p1(t)} = A.

3.25. Let o(t) = (1 —|¢|)" and ¢1(t) be periodic with period 2 and = pg(t) on
[-1,1]. If X,Y, Z are independent with X and Y having ch.f. ¢y and Z having
ch.f. 1 then X +Y and X + Z both have ch.f. 3.

3.26. Let ¢ x and py be the ch.f. of X and Y. Let § > 0 be such that px (¢) # 0
for t € [-4,6]. If X +Y and X have the same distibution then px (¢)¢y (t) =
ex(t) so py(t) =1 for t € [—0,d] and hence must be =1 by Exercise 3.19.

3.27. vy < E|X|F < A*. Conversely if € > 0 then P(|X|> A —¢€) >0 so
v =EIX|">(\=eFP(X|>)X—¢)

and lim infj_ o V;/k >A—e.

3.28. Since I'(z) is bounded for = € [1,2] the identity quoted implies that
I(z) = [z]! where f(z) = g(x) means 0 < ¢ < f(z)/g(z) < C < oo for all
x > 1. Stirling’s formula implies

nl ~ (n/e)"v2mn

where as usual a,, ~ b, means a,,/b, — 1 as n — oo. Combining this with the
previous result and recalling (n?)'/™ — 1 shows

>~

~ Cn

n+a+l (n+a+1)/An
Ae

D((n+a+1)/N)Y" ~ (
from which the desired result follows easily.

2.4. Central Limit Theorems

4.1. The mean number of sixes is 180/6 = 30 and the standard deviation is

V/(180/6)(5/6) = 5
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so we have

P(Siso < 24.5) = P (S180 —30 ‘5'5)

5 -5
~ P(x <-1.1)=1-0.8643 = 0.1357

4.2. (a) Exercise 6.5 in Chapter 1 implies
P(S,/v/n > K i.0.) > limsup P(S,,/vn > K) >0

n—oo

so Kolmogorov’s 0-1 law implies P(S,/v/n > K i.0.) = 1.
(b) If S,,/v/n — Z in probability then

|Sm1/Vm! — S/ (m+1)!] — 0 in probability

On the other hand, the independence of S, and S, 41y — Smy imply

Sim — St
P<1<Sm! 9, 2lmt 1)t '<—3>—>P(1<x<2)P(X<—3)>O

i =7 V(m+1)!

so liminf,, oo P(Spmi/vVm! > 1,S4,41)1/4/(m +1)! < =1) > 0 a contradiction.

4.3. Since Y,, = U,, + V,;, the first inequality is obvious. The second follows
from symmetry. To prove the third we note that

P (Z U > zwﬁ> ~ P(x> K//war(0)

If the truncation level is chosen large then var(U;) is large and the right hand
side > 2/5, so the third inequality holds for large n.

4.4. Intuitively, since (22'/2)' = 271/2 and S,,/n — 1 in probability

Sndg Sp—n
25— v = [ S o

To make the last calulation rigorous note that when |S,, —n| < n?/? (an event
with probability — 1)

Sndy Sy, —n
S VRN

Snoq 1

n vn
23 1 1
(n—n2/3)1/2  pl/2

s n dx - nt/3 0
- n_n2ss 223/2 7 2(n —n?/3)3/2 -

IN
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as n — OQ.

4.5. The weak law of large numbers implies . X2 /no? — 1. y~ /2 is

m=1
continuous at 1, so (2.3) implies

" 1/2
(UQn Z X72n> — 1 in probability
m=1
and Exercise 2.11 implies

ZZ:le 02” 1/2:> 1
ovn \>"_ X2 X

m=1

4.6. Kolmogorov’s inequality ((7.2) in Chapter 1) implies

1—e)an<m<(1+€)an

P ( sup | S — S[(l,e)an” > 50\/an> < 26/62
(

If X,, = SN, /o\/a, and Y,, = S, /o\/a, then it follows that

limsup P(|X,, — Y,,| > 6) < 2¢/6?

n—oo

Since this holds for all ¢ we have P(|X,, — Y,| > 0) — 0 for each § > 0, i.e.,
X, —Y, — 0in probability. The desired conclusion follows from the converging
together lemma Exercise 2.10.

4.7. Ny/(t/p) — 1 by (7.3) in Chapter 1, so by the last exercise
(Sn, = uNo) [ (o?t/ )2 = x
In view of Exercise 2.10 we can complete the proof now by showing
(Sn, —t)/VE—0

To do this, we observe that EY;> < co implies

P( max Y, > 6\/5) < (2t/u)P(Yy > V)

1<m<2t/p
2

< =
S e

E(Y:Y: > eVt) =0

by the dominated convergence theorem. Since P(N; +1 < 2t/u) — 1 and
0 <t— SN, <Yn,+1, the desired result follows from Exercise 2.10.
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4.8. Recall u = [t/u]. Kolmogorov’s inequality implies

243/5

P(|Sutm — (Su +mu)| > t2/5 for some m € [—t3/°#3/°]) < 2. z

s 0

as t — oo. When the event estimated in the last equation does not occur we
have
Dy +mp —t*° < Sy — t < Dy +mp + t3/°

when m € [—t3/°,3/5]. When
= (=D +2t*°) /i Susm >t so Ny <u—D;/p+2t>°/p
m= (=D —2t*°) /. Suym <t so Ny >u—Dy/p—2t%°/p
The last two inequalities imply (recall u = [t/u])
[Nt — (t = Dy)/
t1/2
The central limit theorem implies D;/o+/t/1n = x and the desired result follows
from Exercise 2.10.

49 Let Y,, =1if X, >0and Y,, = —1if X,,, <0. P(X,;, # Y;m) = m 2 s0
the Borel Cantelli lemma implies P(X,, # Y;, i.0.) = 0. The ordinary central
limit theorem implies T, = Y7 + --- + Y}, has T;,/\/n = X, so the converging
together lemma, Exercise 2.10, implies S, /\/n = x.

4.10. Let X, 1 = (X — EXy)/+/var(Sy,). By definition, (i) in (4.5) holds with
0? = 1. Since |X,, — EX,,| < 2M, the sum in (ii) is O for large n. The desired
result follows from (4.5).

4.11. Let X, m = X,»/v/n. By definition (i) in (4.5) holds with ¢? = 1. To
check (ii) we note that

Y E(X] i [ Xum| > @) =07t Y E(X7: 1 X| > ev/n)

m=1 m=1

— 0 in probability.

TN E(IXPT) < Cleyn)?
m=1

The desired result now follows from (4.5).

4.12. Let Xypm = (Xn— EXy)/ . By definition (i) in (4.5) holds with o2 = 1.
To check (ii) we note that

N EX2 0 1 Xnml > €)= 0,% Y E(Xm — EXin)%5 [ X — EXp| > €a)

m=1 m=1

< 675047:(24*5) Z E(|Xm _ EXm|2+5) =0

m=1
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The desired result now follows from (4.5).

4.13. (i) If 5 > 1 then ), P(X; # 0) < oo so the Borel Cantelli lemma implies
P(X; #01i0.)=0and >, X; exists.

(i) EX? = j27F so var(S,) ~ n® /(3 — ). Let X, = X, /nB=8/2 By
definition (i) in (4.5) holds with 02 = 1/(3 — 3). To check (ii) we note that
when 8 < 1, (3—03)/2 > 1 so eventually the sum in (ii) is 0. The desired result

now follows from (4.5).
(iii) When 8 =1, Eexp(itX;) =1 — j7 (1 — cos(jt)). So

n

Eexp(itSy/n) = H ( — (j/n)"YHcos(jt/n) — 1})

(1 — cos(tx))/z is bounded for z < 1 and the Riemann sums

Z% (j/n)"{cos(jt/n) — 1} — / “Hcos(xt) — 1} dx
j=1

so the desired result follows from Exercise 1.1.
2.6. Poisson Convergence

1. (i) Clearly d(u,v) = d(v, ) and d(p,v) = 0 if and only if 4 = v. To check
the triangle inequality we note that the triangle inequality for real numbers
implies

(@) = v(@)| + |v(z) = 7(2)] > |p(z) — ()|

then sum over x.
(i) One direction of the second result is trivial. We cannot have ||p, — p|| — 0
unless pp, () — p(z) for each x. To prove the converse note that if p, (z) — p(z)

D lpnl@) = p@)| =2 (u(z) = pal2))* =0

by the dominated convergence theorem.

6.2. (u(z) —v(z))t < P(X = 2,X # Y) so summing over x and noting that
the events on the right hand side are disjoint shows ||u — v||/2 < P(XY). To
prove the other direction note that

D ou@) Avla) =Y ulz) = (u(z) = vi@)" =1 |ju—vl|/2
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Let I;, x € Z be disjoint subintervals of (0, 1—||u—v||/2) with length u(z)Av(z).
Set X =Y =z onl,. Let J,, x € Z, be disjoint subintervals of (1—||u—v|/2,1)
with length (u(z) — v(z))" and set X =z on J,. Since

{u(@) Av(@)} + (@) —v(@)" = ()
X has distribution p. For Y, we similarly let K, x € Z, be disjoint subintervals
of (1 —|lg—v||/2,1) with length (v(z) — pu(z))" and set Y =z on K.
6.3. Let X,y = (7 — 7% _1) — 1. The hypotheses of (6.7) hold with

m m

m—l( m—1> <m—1>2
Pnm = 1- €n,m =
n n n

for 1 <m < k,,. The desired result follows from (6.7) since

max ppm < kp/n—0

1<m<kn,
S o~ LS 1y X
~ — — ~
Pr,m n 2n 2
m=1 m=1
k k
- 1 & k3
n,m — o -1 2o 0
mzzl o 7’L2 m:l(m ) 37’L2 -

6.4. For m > 1, 7t — 77> _; has a geometric distribution with p=1—(m —1)/n
and hence by Example 3.5 in Chapter 1 has mean 1/p = n/(n — m + 1) and
variance (1 —p)/p* =n(m —1)/(n —m + 1)2.

k

n n n
Pk =D TS 2

m=1 Jj=n—k+1
"od
n—k L
k n
2 n(m —1) n—7
k=D =" D)
m=1 (n m+ 1) Jj=n—k+1 J
1 B
-y e[ P
j=n—k+1 (j/n) 1-a <
Let tpm =70 — 72 _1 and Xy m = (tnm — Etnom)/v/n. By design EX,, ., =0

and (i) in (4.5) holds. To check (ii) we note that if k/n < b < 1 and Y is
geometric with parameter p=1—10

k
D E(Xp i | Xnm| > €) <E((Y/V)%Y > e/n) =0
m=1
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by the dominated convergence theorem.
6.5. Tterating P(T >t +s) = P(T > t)P(T > s) shows
P(T > ks) = P(T > s)*
Letting s — 0 and using P(T' > 0) = 1 it follows that P(T > t) > 0 for all ¢.
Let e~ = P(T > 1). Using
P(T>2"") =P(T>2"")?
and induction shows P(T > 27") = exp(—A2~"). Then using the first relation-

ship in the proof
P(T >m2™") = exp(—=Am2™")

Letting m2~"™ | ¢, we have P(T > t) = exp(—At).

6.6. (a) u(r +s) = P(Ny1s = 0) = P(N, = 0, Ny45s — N, = 0) = u(r)u(s) so
this follows from the previous exercise.

(b) If N(t) — N(t—) < 1 for all ¢ then for large n, w ¢ A,. So A, — 0 and
P(A,) — 0. Since P(A4,) =1— (1 —v(1/n))™ we must have nv(1/n) — 0 i.e.,
(iv) holds.

6.7. We change variables v = 7(t) where v; = ¢;/tp41 for i < n, vp41 = i1
The inverse function is

S(U) = (Ulvn—i-lu cee 7vnvn+luvn+l)

which has matrix of partial derivatives 0s;/0v; given by

Un+1 0 e 0 U1
0 Un4l - - 0 Vg
0 0 cev Ungl Upn
0 0o ... 0 1
The determinant of this matrix is v}, so if we let W = (Vi,...,V,q1) =
r(T1,...,Tht1) the change of variables formula implies W has joint density

n

fW(Ula ey Un, Un-i—l) = ( H )\e—)\vn+l(’Um—’Um1)> Ae_)\vn+1(1—vn)v;7:+1

m=1

To find the joint density of V = (V4,...,V},) we simplify the preceding formula
and integrate out the last coordinate to get

o0
1 “A
fv(vi,... on) :/ A on e duy g = !
0
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for 0 < vy <ws...<w, <1, which is the desired joint density.

6.8. As n — oo, T),+1/n — 1 almost surely, so Exercise 2.11 implies
n d
nd = ’rLTk/Tn_H = T}
6.9. As n — 0o, Ty, +1/n — 1 almost surely, so if € > 0 and n is large

n Y Wavgva_ sy 207 Y gt sy — e T
m=1

m=1

almost surely by the strong law of large numbers. A similar argument gives an
upper bound of exp(—z(1 — €)) and the desired result follows.

6.10. Exercise 6.18 in Chapter 1 implies

—1 _
(logn) 1§I7E%>7§+1Tm Tt — 1

As n — oo, Th41/n — 1 almost surely, so the desired result follows from
Exercise 2.11.

6.11. Properties of the exponential distribution imply

1<m<n+1

P((n—i—l) min T, — m_1>x)=e_w

Asn — oo, (n+ 1)Tp41/n? — 1 almost surely, so the desired result folllows
from Exercise 2.11.

6.12. Conditioning on N = m, we see that if mg,..., m; add up to m then
B — — m! mo mi 7>\)‘m
P(No—mo,...,Nk—mk)_m.po P -
k .
- H e~ P (Ap;)™
- mj!
7=0

6.13. If the number of balls has a Poisson distribution with mean s = nlogn —
n(log ) then the number of balls in box i, IV;, are independent with mean
s/n = log(n/p) and hence they are vacant with probability exp(—s/n) = u/n.
Letting X, ; = 1 if the ith box is vacant, 0 otherwise and using (6.1) it follows
that the number of vacant sites converges to a Poisson with mean pu.
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To prove the result for a fixed number of balls, we note that the central limit
theorem implies

P(Poisson(s1) < r < Poisson(sz)) — 1

Since the number of vacant boxes is decreased when the number of balls in-
creases the desired result follows.

2.7. Stable Laws

7.1. log(tx)/logt = (logt+logz)/logt — 1 as t — oo. However, (tz)°/t¢ = x°.

7.2. In the proof we showed
EeXp(itgn(e)/an) — exp (/ (eitz — 1)9a$*(a+1) dr

+ / (e —1)(1 — 9)a|:v|_(o‘+1)dx)

— 00

Since e* — 1 ~ itz as x — 0, if we assume a < 1 the right-hand side has a
limit when e — 0. Using (7.10) and (7.6) the desired result follows.

7.3. If we let Z,, = sgn (Y;,)/|Yin|?, which are i.i.d., then for z > 1
P(Zn| > 1) = P(YV| <2~ /7) = 5~ V/p
(i) When p < 1/2, EZ2, < oo and the central limit theorem (4.1) implies

n~1/? i Zm = CX

m=1

(ii) When p = 1/2 the Z,, have the distribution considered in Example 4.8 so

(nlogn)~1/2 Z Zm = X

m=1

7.4. Let X1, Xa,... be i.id. with P(X; > z) = 27 for ¢ > 1, and let S,, =
X1+ -+ X, (7.7) and remarks after (7.13) imply that (S, — b,)/a, =Y
where Y has a stable law with k = 1. When a < 1 we can take b, = 0 so
Y >0.
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7.5. (i) Using (3.5)

u

P(IX| > 2/u) < u—l/ (1 (1)) dt

—Uu

Using the fact that 1 — ¢(u) ~ Clu|® it follows that the right hand side is
~ C'u|, and hence P(|X| > x) < C"|z|~* for z > 1. From the last inequality
it follows that if 0 < p < «

E|X|P :/ prP'P(|X| > z) dx
0
1 0o
< / pxP~ldx —l—pC”/ 2P dr < 00
0 1

(ii) Let X1, Xo,... beiid. with P(X; > 2) = P(X; < —z) =2~ %/2 for z > 1,
and let S, = X7 4+ --- 4+ X,,. From the convergence of X,, to a Poisson process

we have
[{m <n: X, > zn'/*}| = Poisson(z~%/2)

[{m <n: X, <-—n'*}| = Poisson(1/2)

Now S, > an!/* if (i) there is at least one X,, > xn'/® with m < n, (ii) there
is no X,, < —n'/® with m < n, and (iii) S,(1) > 0 so we have

liminf P(S,, > xnl/o‘) > xTe*z 2. =12, 3
To see the inequality note that P(iii) > P(i) and even if we condition on the
number of |X,,,| > n'/® with m < n the distribution of S, (1) is symmetric.

7.6. (i) Let X1, Xo,... be i.id. with P(X; > z) = 027%/2, P(X; < —zx) =
(1 —0)x= for x > 1, and let S, = X3 +---+ X,,. (7.7) implies that (S, —
bn)/nY* =Y and (7.15) implies oy, = lim any/a, = kY. (ii) When o < 1 we
can take b, = 0 so O = limy,— 00 (kby, — bpg)/an = 0.

7.7. Let Y1,Y5,... be i.i.d. with the same distribution as Y. The previous
exercise implies /Y £ V; + -+ + Y, so if P(\) = Eexp(—AY) then

V)" = p(n'N)
Taking nth roots of each side we have

¥() =Pt/
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-1/«

Setting n = m and replacing A by Am in the first equality, and then using

the second gives
P(A) = Y(m = EN™ = P((m/n) N

Letting e~ = (1) and m/n — A“ the desired result follows.

7.8. (i) Using the formula for the ch.f. of X and the previous exercise we have
Eexp(it(XYV?)) = Eexp(—c|t|*Y) = exp(—c[t|*?)

(i) [Wa| has density 2(27)~2/2¢=*"/2 and f(z) = 1/a2 is decreasing on (0, oo
so using Exercise 1.10 from Chapter 1, and noting g(y) = 1/, ¢'(y) =
—(1/2)y3/2 we see that Y = 1/|W5|? has density function

2 a1 e

V2T iy

as claimed. Taking X = W and Y = 1/W2 and using (i) we see that Wy /Wy =
XY/2 has a symmetric stable distribution with index 2 - (1/2).

2.8. Infinitely Divisible Distributions

8.1. Suppose Z = gamma(a, A). If X, 1,..., X, are gamma(a/n, A) and in-
dependent then Example 4.3 in Chapter 1 implies X, 1 + -+ 4+ X, , =4 Z.

8.2. Suppose Z has support in [-M, M]. If X,, 1,..., X, » are independent and
Z=Xp1+ -+Xnnthen X, 1,..., X, , must have support in [-M/n, M/n].
So var(X, ;) < EX?; < M?/n? and var(Z) < M?/n. Letting n — oo we have
var(Z) = 0.

8.3. Suppose Z = X, 1 + - - -+ X,, , where the X, ; are i.i.d. If ¢ is the ch.f. of
Z and ¢, is the ch.f. of X,, ; then ¢! (t) = ¢(¢). Since ¢(t) is continuous at 0
we can pick a § > 0 so that ¢(t) # 0 for ¢ € [—0,d]. We have supposed ¢ is
real so taking nth roots it follows that ¢, (t) — 1 for ¢t € [—¢,0]. Using Exercise
3.20 now we conclude that X, 1 = 0, and (i) of (3.4) implies ¢, (t) — 1 for all
t. If p(tg) = 0 for some ty this is inconsistent with ¢ (tg) = ¢(to) so ¢ cannot
vanish.

8.4. Comparing the proof of (7.7) with the verbal description above the problem
statement we see that the Lévy measure has density 1/2|z| for z € [-1,1], 0
otherwise.
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2.9. Limit Theorems in Rd

9.1.

lim P(Xl STL,...,XZ',1 STL,Xl SZE,XZ'Jrl S?’L,...,ngn)

n—oo

lim F(n,...,n,z,n,...,n)
n—oo

where the z is in the ith place and n’s in the others.

9.2. Tt is clear that F has properties (ii) and (iii). To check (iv) let G(z) =
[T, Fi(z;) and H () = T[], Fi(x:)(1—Fi(z;)). Using the notation introduced
just before (iv)

d
Y sen(0)G(v) = [] Fibi) = Fi(as)
v i=1

d
> sen (0)H(v) = [[{F®:) (1 = Fi(bi) — Fi(a:)(1 — Fi(a:)}
v =1

To show ), sgn (v)(G(v) + aH(v)) > 0 we note

Fi(bi)(1 — Fi(b;)) — Fi(a:)(1 — F(as))
= {Fi(b;) — Fi(a:)}(1 — Fi(a;))
+ Fi(a){(1 = Fi(bi)) — (1 = Fi(a;))}
= {1 = Fi(bi) — Fi(a:) }(Fi(bi) — Fi(ai))
and |1 — F;(b;) — Fy(a;)] < 1.
9.3. Each partial derivative kills one intergal.

9.4. If K is closed, H = {z : x; € K} is closed. So

limsup P(X,,; € K) =limsup P(X,, e H) < P(X € H) = P(X; € K)

n—oo n—oo

9.5. If X has ch.f. ¢ then the vector Y = (X, ..., X) has ch.f.

P(t) = Eexp ithX =y th
J J
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9.6. If the random variables are independent this follows from (3.1f). For the
converse we note that the inversion formula implies that the joint distribution
of the X; is that of independent random variables.

9.7. Clearly, independence implies I';; = 0 for ¢ # j. To prove the converse note
that I';; = 0 for 7 # j implies

d
X1,y d HQPX]

and then use Exercise 9.6.

9.8. If (X1,...,X4) has a multivariate normal distribution then

(p01X1+'”+CdXd( = Fexp Ztc X

=exp | —t Z cifi — Z Z tQCiFijcj/2
i i g

This is the ch.f. of a normal distribution with mean cf* and variance cI'ct. To
prove the converse note that the assumption about the distribution of linear
combinations implies

Eexp ichXj = exp —ZCi9i—ZZCirijcj/2
J i (]

so the vector has the right ch.f.



3 Random Walks

3.1. Stopping Times

1.1. P(X; = 0) < 1 rules out (i). By symmetry if (ii) or (iii) holds then the
other one does as well, so (iv) is the only possibility.

1.2. The central limit theorem implies S,,/v/n = o), where x has the standard
normal distribution. Exercise 6.5 from Chapter 1 implies

P(S,/v/n >1i.0.) > limsup P(S,/vn >1) >0

So Kolmogorov’s 0-1 law implies this probability is 1. This shows limsup 5,, =
oo with probability 1. A similar argument shows lim inf S,, = —oo with proba-
bility one.
1.3.{SAT=n}={S=n,T>n}U{S>n,T =n}. The right-hand side is in
Fnsince {S=n} € F,and {T >n} ={T <n—1}°€ F,_1, etc. For the other
result note that {SVT =n} ={S=n,T <n}U{S <n,T =n}. The right-
hand side is in F, since {S =n} € F, and {T < n} = U _{T =m} € F,,
ete.
14.{S+T =n} =U"_L{S =m,T =n—m} € F, so the result is true.
1.5. {¥y € B} N{N =n} ={Y,, € B}n{N =n} € Fn, so Yy € Fu.
1.6. If A € Fjs then

AN{N =n}=U}_ANn{M =m}Nn{N =n}

Since A € Fpry, AN{M = m} € F,, C F,. Thus AN{N =n} € F, and
Ae Fn.

1.7. Dividing the space into A and A¢ then breaking things down according to
the value of L

(N=nl={L=nlnA)UU"_, ({L=m}n{M=n}nA°
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{L = m} N A° in F,,, whenever A € F,, by the definition of Fr. Combining
this with {M = n} € F,, proves the desired result.

1.8. (i) (1.4) implies that P(a) < o0) = P(a < 00)¥ so P(ag, < 00) — 0
if Plaw < o0) < 1. (ii) (1.5) implies that & = S, — Sa,_, are i.id., with
E¢y, € (0,00] so (7.2) in Chapter 1 implies S, /k — E& > 0 and sup,, S, = .

1.9. By the previous exercise we get the following correspondence

Pla<x) <l PE<ox)<l1 sup S, < oo infS, > —o0
Pla<x)=1 PB<oo)<1 supS, = oo infS, > —o0
Pla<o)<l PB<oo)=1 sup S, <oo infS, = —
Pla<o)<l PB<oo)<l1 sup S, =oco infS, =—

Using (1.2) now we see that the four lines correspond to (i)—(iv).

1.10. (i) A7, corresponds to breaking things down according to the location of
the last time the minimum is attained so the A}, are a partition of 2. To get
the second equality we note that

Al ={Xn <0, X+ X1 <0,... X+ + X1 <0
X1 >0, X1+ X2 > 0,0, X1 + - + X > 0}

(ii) Fatou’s lemma implies
1>PB= ooZPa>k P(3 = x0)Ex
k=0

When P(3 = oo) > 0 the last inequality implies that Ea < co and the desired
result follows from the dominated convergence theorem. It remains to prove
that if P(3 = co) = 0 then Ea = co. If P(aw = o0) > 0 this is true so suppose
P(a = o0) = 0. In this case for any fixed i P(aw > n — i) — 0 so for any N

n—N
1 <liminf Y P(a>k)P(8>n—k)
k_

n—N
(B>N)hm1nfz Pla>k)

n—oo

k=0

so Ea > 1/P(8 > N) and since N is arbitrary the desired result follows.

L.11. (i) If P(3 = o0) > 0 then Ea < oco. In the proof of (ii) in Exercise 1.8
we observed that Sy /k — E&1 > 0. As k — oo, a(k)/k — Ea so we have
limsup S, /n > 0 contradicting the strong law of large numbers.
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(ii) If P(8 = 00) > 0 and P(X; > 0) > 0 then P(3 = co0) > 0. (Take a sample
path with 8 = oo and add an initial random variable that is > 0.) Thus if
P(B3=00) =0, EX; =0 and P(X; = 0) < 1 then P(8 = oc0) = 0. Similarly,
P(a = 00) = 0. Now use Exercise 1.9.

1.12. Changing variables yx = x1 + - - - + x; we have

1 1—x1 l—21 - —Tp—1
P(T>n):// / dx, -+ - dxs dxy
o Jo 0

0<y1<...<yn<1

since the region is 1/n! of the volume of [0,1]. From this it follows that ET =
Yool o P(T > n) = e and Wald’s equation implies ESp = ETEX; = ¢/2.

1.13. (i) The strong law implies S,, — oo so by Exercise 1.9 we must have
P(a < o0) =1 and P(8 < o0) < 1. (ii) This follows from (1.4). (iii) Wald’s
equation implies ESyan = F(a An)EX;. The monotone convergence theorem
implies that E(a An) 1 Ea. P(a < c0) = 1 implies Sqan, — So = 1. (ii) and
the dominated convergence theorem imply ESqya, — 1.

1.14. (i) T has a geometric distribution with success probability p so ET = 1/p.
The first X,, that is larger than a has the distribution of X; conditioned on
X1 >aso

EYr=a+EX —a)"/p—c/p

(ii) If @ = « the last expression reduces to a. Clearly
n
+
g}%ﬁXm <a+ Z(Xm —a)
m=1
for n > 1 subtracting cn gives the inequality in the exercise. Wald’s equation
implies that if E7 < co then

EY (Xm—a)t =ErE(X; —a)*
m=1

Using the definition of ¢ now we have EY; < a.

1.15. using the definitions and then taking expected value

STan = SFam-1) T 2XnSn-1+ X)L (120
ESGpn = ESFp(u_1y + 0> P(T > n)
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since X, = 0 and X,, is independent of S,,_1 and 1(7>,) € Fpn_1. [The

expectation of S,,_1X,, exists since both random variables are in L2.] From the
last equality and induction we get

ESip, =0 > P(T >m)

m=1
E(Stan — Stam)® = 0° Z P(T > n)
k=m+1
The second equality follows from the first applied to X411, Xin42,.... The

second equality implies that S, is a Cauchy sequence in L?, so letting n — oo
in the first it follows that ES% = o2ET.

3.4. Renewal Theory

4.1. Let Xz :Xi/\t, Tk :X1++Xk, Nt:inf{k:Tk >t}. Now Xl :Xz
unless X; >t and X; > t implies N; < i. Now

t<Ty, <2t

the optional stopping theorem implies

ETy

. =

E(X; At)EN,

and the desired result follows.

4.2. Pick § > 0 so that P(§ > 6) =€ > 0. Let & = 01if & < § and = § if
& >0. Let T, =& + -+ &, and M, = inf{n: T, > t}. Clearly T, < T,, and
so Ny < My. My is the sum of k; = [t/0] + 1 geometrics with success probability
€ so by Example 3.5 in Chapter 1

EMt = kt/ﬁ
var(M;) = k(1 — €)/é?
E(M;)? = var(M;) + (EM;)* < C(1 + 1)

4.3. The lack of memory property of the exponential implies that the times
between customers who are served is a sum of a service time with mean p and
a waiting time that is exponential with mean 1. (4.1) implies that the number
of customers served up to time ¢, M, satisfies M/t — 1/(1 + p). (4.1) applied
to the Poisson process implies Ny/t — 1 a.s. so My/Ny — 1/(1+ p) a.s.
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4.4. Clearly if I° = oo for all 6 > 0, h cannot be directly Riemann integrable.
Suppose now that I° < oo for some § > 0. Let

h(x)= sup  h(y)
y€(z—06,2+9)
ay = sup  h(y)

y€Ee[kd,(k+1)6)
If € [md, (m + 1)d) then
(@) < ap, 1 +ap, + ah i

so integrating over [md, (m + 1)d) and summing over m gives
/ R (x) dx < 3I° < oo
0

Now I = [ aFm/n} dx, a?m/m — h(z) asn — 0, and if n < § then a?m/m < hd(x)
so the dominated convergence theorem implies

I — / h(z) dzx
0

A similar argument shows I, — fooo h(zx) dz and the proof is complete.

4.5. The equation comes from considering the time of the first renewal. It is easy
to see using (4.10) that h(t) = (1 — F(t))1 (4,00 is directly Riemann integrable
whenever p < oo so (4.9) implies

1 oo
H{t) — _/ (1= F())1 (5,00 (5) dls
0
4.6. In this case the equation is
t
H(t) = e My 00)(t) + / H(t —s) e ds
0
and one can check by integrating that the solution is

H(t):{o ift <z

e ™M ift> g

4.7. By considering the time of the first renewal

H(t) = (1= F(+y)1l(z,00) +/O H(t— s)dF(s)
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It is easy to see using (4.10) that h(t) = 1 — F(t 4 y)1(4,00) is directly Riemann
integrable whenever 1 < oo so (4.9) implies

Hﬁ%ﬁl/ (1= F(y+ )1 (5,00 (5) d
0
4.8. By considering &; and m;
t
H(t)=1-Fi(t) +/ H(t—s)dF(s)
0

It follows from (4.10) that h(t) = 1 — Fi(t) is directly Riemann integrable
whenever p1 < 0o so (4.9) implies

1 oo
H(t)—>—/ 1— Fi(s)ds = —HL
0 M1+ 2

4.9. By considering the times of the first two renewals we see
t
H(t)=1-F(t) +/ H(t — s)dF*(s)
0

Taking 1 = pe = p in the previous exercise gives the desired result.

4.10. V. = F 4V % F so differentiating gives the desired equality. Using (4.9)
now gives

1 [ 1
V() — ;/0 fOdt =

4.11. (i) Let U, = 1 if (Xp,..., Xpn+k—-1) = (i1,...,tx). Applying the strong
law to the i.i.d. sequences {Uit;k,j > 1} for ¢ = 0,1,...,k — 1 shows that
N, =" __Uny/n— 27% Since EN, /n — 1/FEt,, it follows that Ety = 2F.

m=1

(ii) For HH we get Et; = 4 since
Et; =1/44+1/4(Et1 +2)+ 1/2(Et; + 1) (1/4)Et; =1

For HT we note that if we get heads the first time then we have what we want
the first time T appears so

Ety =P(H)- 2+ P(T)-(Et; +1)  (1/2)Et; = 3/2

and Etl =3
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4 Martingales

4.1. Conditional Expectation

1.1. Let ¥; = E(X;|F). f AC B and A € F then

/Ylsz/deP:/ngP:/YgdP
A A A A

If A={Y; —Y; > ¢ > 0} N B then repeating the proof of uniqueness shows
P(A)=0and Y; =Y; a.s. on B.

1.2. The defintion of conditional expectation implies
/ P(A|G)dP = / 1ladP =P(ANB)
B B
Taking B = G and B = Q it follows that

JoP(AIG)dP  P(GNA)
jc’;P(Alg)dP ~ P(4) = P(Gl4)

1.3. a®1(x|>q) < X? s0 using (1.1b) and (1.1a) gives the desired result.

1.4. (1.1b) implies Yas = E(Xp|F) 7 alimit Y. If A € F then the defintion of
conditional expectation implies

/X/\Msz/YMdP
A A

Using the monotone convergence theorem now gives

/XdP:/YdP
A A



Section 4.1 Conditional Expectation 55
1.5. (1.1b) and (1.1a) imply
0 < E((X +0Y)%G) = E(X?|G)0* + 2B(XY|G)8 + E(Y?|G)
Now a quadratic af? + bf + ¢ which is nonnegative at all rational § must have

b2 — 4ac < 0 and the desired result follows.

1.6. Let 71 = o({a}) and F2 = o({c}). Take X(b) =1, X(a) = X(c) =0. In
this case

a b c
E(X|F) 0 1/2 1/2
E(BE(X|F)|F) 1/4 1/4 1)2

To see this is # E(F(X|F2)|F1), we can note it is not € Fj.

1.7. (i) implies (ii) follows from Example 1.2. The failure of the converse follows

from Example 4.2 in Chapter 1.

To prove (ii) implies (iii) we note that (1.1f), (1.3), and the assumption
E(XY) = EE(XY|X) = E(XE(Y|X)) = E(XEY) = EXEY

To see that the converse fails consider

Xy 1 -1
1 1/4 0
0 0 1/2
-1 1/4 0

where EX = EY = EXY =0 but E(Y|X) = —1 + 2X2.

1.8. Let Z = E(X|F) — E(X|G) € F and steal an equation from the proof of
(1.4)
E{X — E(X|F) - Z}* = BE{X — BE(X|F)}* + EZ*

Inserting the definition of Z now gives the desired result.

1.9. var(X|F) = B(X?|F) — E(X|F)? and E(E(X?|F)) = EX? we have
E(var(X|F)) = EX? — E(BE(X|F)?)

Since E(E(X|F)) = EX we have
var(B(X|F)) = E(B(X|F)?) - (EX)?

Adding the two equations gives the desired result.
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1.10. Let F = o(N). Our first step is to prove E(X|N) = uN. Clearly (i) in
the definition holds. To check (ii), it suffices to consider A = {N = n} but in
this case

[ xdp =B Yl
{N=n}
=nuP(N =n) = / uN dP
{N=n}
A similar computation shows that E(X?2|N) = 02N + (uN)? so
var(X|N) = E(X?|N) — E(X|N)? = >N
and using the previous exercise we have
var(X) = E(var(X|N)) + var(E(X|N))
= 0%2EN + p?var(N)
1.11. Exercise 1.8 with G = {0, Q} implies
EY -X)*+E(X -EY)?=E(Y - EY)?

since EY = EX, and EX? = EY?, E(X — EX)? = E(Y — EY)? and subtract-
ing we conclude E(Y — X)? = 0.

1.12. Jensen’s inequality implies
E(|X||F) = |B(X|F)|

If the two expected values are equal then the two random variables must be
equal almost surely, so E(|X||F) = E(X|F) as. on {E(X|F) > 0}. Taking
expected value and using the definition of conditional expectation

E(IX| - X; E(X|F) > 0) =0
This and a similar argument on {E(X|F) < 0} imply
sgn (X) =sgn(E(X|F)) as.

Taking X =Y — c it follows that sgn (Y — ¢) = sgn (E(Y|G) — ¢) a.s. for all
rational ¢ from which the desired result follows.
1.13. (i) in the definition follows by taking h = 14 in Example 1.4. To check

(ii) note that the dominated convergence theorem implies that A — u(y, A) is
a probability measure.
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1.14. If f = 14 this follows from the definition. Linearity extends the result to
simple f and monotone convergence to nonnegative f. Finally we get the result
in general by writing f = fT — f~.

1.15. If we fix w and apply the ordinary Holder inequality we get

[ o, de) [x @)Y )

s(/Mwmmmwmﬂw(/Mwmwwwwﬂw

The desired result now follows from Exercise 1.14.

1.16. Proof As in the proof of (1.6), we find there is a set Q, with P(Q,) =
1 and a family of random variables G(¢q,w), ¢ € Q so that ¢ — G(q,w) is
nondecreasing and w — G(g,w) is a version of P(p(X) < ¢|G). Since G(q,w) €
o(Y) we can write G(q,w) = H(q,Y (w)). Let F(x,y) = inf{G(q,y) : ¢ > z}.
The argument given in the proof of (1.6) shows that there is a set Ay with
P(Y € Ap) = 1 so that when y € Ay, F is a distribution function and that
F(z,Y (w)) is a version of P(p(X) < z|Y).

Now for each y € A,, there is a unique measure v(y,-) on (R,R) so that
v(y, (—oo,x]) = F(x,y)). To check that for each B € R, v(Y (w), B) is a version
of P(p(X) € B|Y), we observe that the class of B for which this statement is
true (this includes the measurability of w — v(Y (w), B)) is a A-system that
contains all sets of the form (aq,b1] U - - (ak, bg] where —oo < a; < b; < o0,
so the desired result follows from the m — X theorem. To extract the desired
r.c.d. notice that if A € S, and B = p(A) then B = (p71)71(A4) € R, and set

n(y, A) = v(y, B).
4.2. Martingales, Almost Sure Convergence

2.1. Since X,, € G, and n — G, is increasing F,, = o(X1,...,X,) C G,. To
check that X, is a martingale note that X,, € F,, while (1.2) implies

E(Xn+1|-7:n) = E(E(Xn+1|gn)|-7:n) = E(Xn|‘7:n) =X,

2.2. The fact that f is continuous implies it is bounded on bounded sets and
hence E|f(Sy)| < co. Using various definitions now, we have

E(f(SnJrl”]:n) = E(f(Sn + €n+1)|-7:n)

1
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2
n

2.3. Let a,, > 0 be decreasing. Then X,, = —a,, is a submartingale but X,, = a
is a supermartingale.

2.4. Suppose P(§; =—-1)=1—¢;, P(& = (1 —€;)/€) = €. Pick €; > 0 so that
i€ <oo,eg =12 P(#-1i0)=0s0X,/n— —1and X,, » —c0.
2.5. Ay =" P(Bu|Fm_1).

m=1
2.6. Since (S, +&nt1)? = 52 +28,6,41 + 5721+1 and &, is independent of F,,,
we have
E(S} 1 = so1|Fn) = S+ 25, E(6ny1|Fn) + E(E2 11| Fn) — soia

_ Q2 2 2 Q2 2
_Sn+0+0n+l_sn+l_sn_sn

2.7. Clearly, Xflk) € F,. The independence of the &;, (4.8) in Chapter 1 and

the triangle inequality imply E|X,(1k)| < 00. Since Xfl]le — x4 X£k71)§n+1

taking conditional expectation and using (1.3) gives

B(X\0)|Fa) = XF) + XEVE (G| Fa) = XP

n

2.8. Clearly, X,, VY, € F,. Since | X, VY,| < |X,|+ |Yal, E| X, VY, < oco.
Use monotonicity (1.1b) and the defintion of supermartingale

E(Xn—i-l \ Yn-i-ll]:ﬂ) > E(Xn+1|—7:n) > Xy
E(Xn-i-l \ Yn+1|]:7l) > E(Yn-i-ll}—n) >Y,

From this it follows that E(Xp41 V Vi1 |Fn) = X, VY.
2.9. (i) Clearly X,, € F,,, and E|X,| < co. Using (1.3) now we have

E(Xpi1|Fn) = Xn E(Yp4a|Fn) = Xa
since Y;, 41 is independent of F,, and has EY,, = 1.
(ii) (2.11) implies X,, — Xoo < 00 a.8. We want to show that if P(Y,, =1) <1
then Xo = 0 a.s. To do this let € be chosen so that P(|Y,, — 1| >¢€) =n > 0.
Now if § > 0

P(|Xpt1 — Xpn| > 0€) > P(X,, > §)P(|Yn41 — 1| > €)

The almost sure convergence of X,, — X implies the left hand side — 0 so
P(X,, > ¢) — 0. This shows X,, — 0 in probability, so Xo, =0 a.s.
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(iii) Applying Jensen’s inequality with ¢(z) = logz to Y; V 6 and then letting

d — 0 we have ElogY; € [—00,0]. Applying the strong law of large numbers,
(7.3) in Chapter 1, to —logY; we have

1 1 —
“logXn=~ logY,, — ElogY; € [-00,0
~log ~ > log¥y, — Elog¥i € [—00,0]

m=1
2.10. Our first step is to prove
Lemma. When |y| < 1/2,y —y? <log(1+y) <.

Proof 14y < e¥ implies log(l + y) < y for all y. Expanding log(1 + y) in
power series gives

2 3 4
Y Y Y
log(1 —y—2 4+ 2 4 ...
ogl+y)=y—5 +5 -7+
When |y| <1/2
2 3 4 2
vy Y L1 2
LTy« 4=
’ 2+3 4+ ’_2(14-24—224— ) Y
which completes the proof. O

Now if >°>°_ | |ym| < 0o we have |y,,| < 1/2 for m > M so Y °_, y2, < oo and
if N > M the lemma implies

Z ym_yrzn S Z 1Og(1+ym) S Z Ym
m=N m=N m=N

The last inequality shows Y °_ \log(1+ym) — 0as N — 00, s0 [[°_; (1 +ym)
exists.

2.11. Let Wy, = X,/ T, (1 4 Yy). Clearly W, € F,,, E|W,,| < E|X,| < cc.
Using (1.3) now and the definition gives

1

[[— (1 +Y5)
1

B Hzl_:ll(l + Ym)
Thus W, is a nonnegative supermartingale and (2.11) implies that W,, — W,

a.s. The assumption " ¥;, < oo implies that [T} (14 ;) — [1°°_, (1+Y5),
$0 X, = Woo I, (1+Y;,) as.

E(Wn-i-ll]:n) = E(Xn+1|‘7:n)

Xn:Wn
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2.12. Let S, be the random walk from Exercise 2.2. That exercise implies
f(Sp) > 0 is a supermartingale, so (2.11) implies f(S,) converges to a limit
almost surely. If f is continuous and noncontant then there are constants o < (8
so that G = {f < a} and H = {f > (8} are nonempty open sets. Since the
random walk S,, has mean 0 and finite variance, (2.7) and (2.8) in Chapter 3
imply that S, visits G and H infinitely often. This implies

liminf £(S,) < a < B < limsup f(S,)

a contradiction which implies f must be constant.

2.13. Using the definition of Y,+1, the inequality X} > X%, the fact that
{N < n} € F, (and hence {N > n} € F,), and finally the supermartingale
property we have

E(Yp1|Fn) = E(X) 1 1 (nsnsn) + Xop1 vty Fn)
< E(X +11(N>n)+Xn+11( N<n)Fn)
= E(X) 41| Fn )1(N>n)+E( 721 1 Fn) L (n<n)
< Xpl(nsn) + X2l (ven) =

2.14. (i) To start we note that Z! = 1 is clearly a supermartingale. For the
induction step we have to consider two cases k = 27 and k = 25+ 1. In the case
k = 2j we use the previous exercise with X! = Z%~1 X% = (b/a)’~}(X,/a),
and N = Ny;_;. Clearly these are supermartingales. To check the other con-
dition we note that since Xy < a we have X}, = (b/a)’~! > X%.

In the case k = 2j + 1 we use the previous exercise with X! = Z % and X2 =
(b/a)?, and N = Na;. Clearly these are supermartingales. To check the other
condition we note that since Xy > b we have X% > (b/a)’ = X3,.

(ii) Since Z2* —n is a supermartingale, EYy > EY,n,,. Letting n — oo and
using Fatou’s lemma we have

E(min(Xo/a,1) = EYy > E(Yn,,; Nop < 00) = (b/a)*P(U > k)

4.3. Examples

3.1. Let N =inf{n: X,, > M}. Xnan is a submartingale with

thAn < M—l—supf,'zIr
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SO sup,, EXJJ(M" < o00. (2.10) implies Xyan, — a limit so X, converges on
{N = co}. Letting M — oo and recalling we have assumed sup,, & < co gives
the desired conclusion.

3.2. Let Uy, Us,... be iid. uniform on (0,1). If X, = 0 then X, = 1 if
Un+1 > 1/2, Xn+1 =—1if UnJrl < 1/2 If X, 7§ 0 then XnJrl =0if Un+1 >
n~2 while X,,,1 = n?2X,, if U,11 < n=2. [We use the sequence of uniforms
because it makes it clear that “the decisions at time n 4 1 are independent of
the past.”] > 1/n* < oo so the Borel Cantelli lemma implies that eventually
we just go from 0 to £1 and then back to 0 again, so sup |X,| < co.

3.3. Modify the previous example so that if X, = 0 then X,;1 = 1 on
Upnt1 > 3/4, X1 = —1if Upp1 < 1/4, X, 41 = 0 otherwise. The previ-
ous argument shows that eventually X, is indistiguishable from the Markov
chain with transition matrix

0 1 0
1/4 1/2 1/4
0 1 0

This chain converges to its stationary distribution which assigns mass 2/3 to 0
and 1/6 each to —1 and 1.

3.4. Let W, = X, — Z:;_:ll Y. Clearly W,, € F,, and E|W,| < oo. Using the
linearity of conditional expectation, Y . _, ¥;, € F,, and the defintion we have

E(Wni1|Fn) < E(Xpi1|Fn) = Y Yo

m=1

n—1
m=1

Let M be a large number and N = inf{k : an:l Y > M}. Now Wyay, is a
supermartingale by (2.8) and
(NAn)—1
WN/\n = XN/\n - Z Ym
m=1

so applying (2.11) to M + Wy, we see that lim, oo Wy an exists and hence
limy, oo W), exists on {N = oo} C {}>, Vi < M}. As M ] oo the right hand
side T €2, so the proof is complete.

3.5. Let X,,, € {0,1} be independent with P(X,, = 1) = p,,. Then

)

(1 —pm)=PX, =0forallm>1)

m=1
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()If > Pm —oothen P(X,, = 1i.0.) = 1 so the product is 0. (ii) If
Pm < 00 then Pm < 1 for large M, so P(X,, = 0 for all m >
m=1 =M
)>Oands1ncepm<1forallm P(X,, =0forall m>1)>0.

3.6. Let p; = P(A;) and p, = P(A,| N AS).

n

(1 =pm) = PNy A7)

m=1

so letting n — oo and using (i) of Exercise 3.5 gives the desired result.

3.7. Suppose I pn = I1nt1 U - ULy py1. If v(jny1) > 0 for all j we have by
using the various definitions that

Xp1dP = ZN Jn+1§ (Ljn+1)

Ikn (Jn+1
(i n)
1(Ikn) = V(Ipn) = X, dP
v(Ik,n) Tiom

If v(In+1) = 0 for some j then the first sum should be restricted to the j with
v(Ijny1) > 0. If g << v the second = holds but in general we have only <.

3.8. If 1 and v are o-finite we can find a sequence of sets QT  so that ()
and v(§;) are < oo and v(€21) > 0. By restricting our attention to £ we can
assume that p and v are finite measures and by normalizing that that v is a
probability measure. Let F,, = o({B,, : 1 < m < n}) where B, = A,, N Q.
Let u, and v, be the restrictions of u and v to F,, and let X,, = du,/dv,.
(3.3) implies that X,, — X v-a.s. where

:/Xdu—l—u(Aﬂ{X:oo})
A

Since X < oo v a.s. and p << v, the second term is 0, and we have the desired
Radon Nikodym derivative.

9. (i) [amdGm = /(1 —am)(l — Bm) + VamPm so the necessary and

sufficient condition is

oo

H \/(1 - am)(l - ﬁm) + \/amﬁm >0

(ii) Let fp(z) = /(1 —p)(1 — )+ /px. Under our assumptions on e, and S,

Exercise 3.5 1mphes Hm:l [ (am) > 0ifand only if Y07, 1— fg, (am) < co.
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Our task is then to show that the last condition is equivalent to >, (i, —

Bm)? < oco. Differentiating gives

p_1/1-p
r 2

— X
\/lp

1[ 1
1
W@ =—15m " 1a = <O
Ife<z,p<1—c¢€then
_ Ve 7 l—e_
_A:—szp($)2—2€3/2 :—B

We have f,(p) = 0 so integrating gives

0> fy(x / foy
_/p /p fil(z)dzdy > —B(x — p)?/2

A similar argument establishes an upper bound of —A(xz—p)?/2 so using f,(p) =
1 we have

Az =p)?/2 <1~ fyz) < B(z —p)*/2

3.10. The Borel Cantelli lemmas imply that when > «a,, < co p concentrates
on points in {0,1}" with finitely many ones while }_ 3, = oo implies v con-
centrates on points in {0,1}" with infinitely many ones.

3.11. Let Uy, Us, ... be iid. uniform on (0,1). Let X,, = 1if U, < a, and
0 otherwise. Let Y,, = 1 if U, < B, and 0 otherwise. Then Xi, Xs,... are
independent with distribution F;, and Y7,Y5,... are independent with distri-
bution Gy,. If 3 |y, — B,] < oo then for large N > o\ | — Bn| < 1 which
implies P(X,, =Y, forn > N) > 0. Since 0 < oy, < 8, < 1 it follows that
P(X, =Y, for n > 1) > 0. This shows that the measures u and v induced by
the sequences (X1, Xs,...) and (Y1, Ys,...) are not mutually singular so by the
Kakutani dichotomy they must be absolutely continuous.

3.12. Let § = P(lim Z,,/u™ = 0). By considering what happens at the first step

we see
0="> ppt* =o(0)
k=0
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Since we assumed 0 < 1, it follows from (b) in the proof of (3.10)) that 6 = p.
It is clear that
{Z, >0 for all n} D {lim Z,,/pu" > 0}

Since each set has probability 1 — p they must be equal a.s.

3.13. p is a root of
1+3 +324_13
rT==-+4+-x+ -+ -z
8 8 8 8



Section 4.4 Doob’s Inequality, LP Convergence 65
Subtracting x from each side and the multiplying by 8 this becomes
0=a2"4+32> —5x+1=(z—1)(2* +42 - 1)

The quadratic has roots —2 + V5 so p= N3

4.4. Doob’s inequality, L? convergence when p >
1

4.1. Since {N = k}, using X; < E(Xy|F;) and the definition of conditional
expectation gives that

E(Xn;N =j) = E(X;;N =j) < E(X; N =)

Summing over j now we have EXy < EXj.

42. Let K, = Ipypen<n. (M <n< N} ={M <n-1}Nn{N <n}¢so K, is
predictable. Y, = (K - X), = Xyan — Xman is a submartingale. Taking n = k
and n = 0 we have EXy — EXj > 0.

4.3. Exercise 1.7 in Chapter 3 implies that for A € Fj

M onA
L:
{N on A¢

is a stopping time. Using Exercise 4.2 now gives FX; < EXpy. Since L = M
on A and L = N on A¢, subtracting E(Xx; A°) from each side and using the
definition of conditional expectation gives

E(Xy; A) < E(Xa; A) = E(E(XNn[Fu); A)

Since this holds for all A € Fy; it follows that Xy < E(Xn|Far).

4.4. Let A = {maxi<m<n |Sm| >z} and N = inf{m : |S,,| > z or m = n}.
Since N is a stopping time with P(N < n) =1, (4.1) implies

0=E(S% —s%) < (z+ K)*P(A) + (2% — var(S,))P(A°)

since on A, |[Sy| < z 4+ K and and on A¢, S% = S2 < 22. Letting P(A) =
1 — P(A°) and rearranging we have

(x + K)* > (var(S,) — 2% + (z + K)?)P(A°) > var(S,,) P(A°)
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4.5. If —¢ < X then using an obvious inequality, then (4.1) and the fact EX,, =0

P( max XWZ/\) SP( max (Xn—i-c)QZ(c—i—/\)Q)

1<m< 1<m<

< E(Xn+c¢)*  EX2+c?
(c+ N2 (c+A)2

To optimize the bound we differentiate with respect to ¢ and set the result to
0 to get

EX2 + 2 n 2¢c
(c+ A3 " (c+A)?
2c(c+ N —2(EX2+c*) =0

—2 0

so ¢ = EX2/\. Plugging this into the upper bound and then multiplying top
and bottom by A2

EX2+ (EX2/N)? (V2 +EX2)(EX?)

(EX2 +/\)2  (BEX2 4+ )2)2

n

A

4.6. Since X, is a submartingale and z? is increasing and convex it follows that
(X)) <AB(X]|Fm)}? < B(X,))P1Fn)

Taking expected value now we have E(X,)? < oo and it follows that

EX? <) E(X})P <o
m=1

4.7. Arguing as in the proof of (4.3)

E(Xn/\M)§1+/ P(X, AM > ))dA
1
1
XnAM
§1+/Xf{/ A~ taxdp
1

:1+/X:log(XnAM)dP
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(ii) alogb < aloga +b/e < alogt a +b/e

Proof The second inequality is trivial. To prove the first we note that it is
trivial if b < a. Now for fixed a the maximum value of (alogb — aloga)/b for
b > a occurs when

b bz b2

0= <a10gb—aloga>/ a aloghb—aloga
i.e., when b = ae. In this case the ratio = 1/e. |

(iii) To complete the proof of (4.4) now we use the Lemma to get
E(X, AM) <1+ E(X,log" X;) + E(X, A M)/e

Since E(X,, A M)/e < oo we can subtract this from both sides and then divide
by (1 —e™1) to get

EX, AM)<(1+e H 1+ EX logt X,1)
Letting M — oo and using the dominated convergence theorem gives the desired
result. |
4.8. (4.6) implies that E(X,,Y;m—1) = E(X;n-1Ym—1). Interchanging X and Y,
we have E(X,,—1Y;,) = E(X;n—1Ym—1), so
E(Xm - Xm—l)(ym - m—l)

=EX,Y, —EXp Y1 — EXpy 1Y — EXp 1Y

=EX,)Yo+ (24 1)EX,;,—1Ym-1
Summing over m — 1 to n now gives the desired result.

4.9. Taking X =Y in the previous exercise

EX?=EX;+ > EE&,

m=1

So our assumptions imply sup,, EX?2 and (4.5) implies X,, — X, in L2

4.10. Applying the previous exercise to the martingale Y;, = Y7 _| &, /by, we
have Y,, — Y4 a.s and in L?, so Kronecker’s lemma ((8.5) in Chapter 1) implies
(Xn — X0)/bp — 0 a.s.

4.11. Syan is a martingale with increasing process o?(N An). If EN'Y? < 0
then Esup,, |Snan| < 0o. (4.1) implies that ESnyan = 0. Letting n — oo and
using the dominated convergence theorem, ESy = 0.
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4.5. Uniform Integrability, Convergence in L'

5.1. Let epr = sup{x/p(z) : 2 > M}. Forie I
E(|Xa]; | Xi] > M) < emr E(p(|Xi); | Xa| > M) < Cen

and ey — 0 as M — oo.
5.2. Let F, = o(Y1,...,Y,). (5.5) implies that
E(0|Fn) — E(0]Fx)
To complete the proof it suffices to show that § € F. To do this we observe
that the strong law implies (Y1 +---4+Y;,)/n — 0 a.s.
5.3.Let an ik = {f((k+1)27™)— f(k27"™)}/27™. Since Iy, »n, = Iog n+1YUok11 n+1,

it follows from Example 1.3 that on I},

A2k, n+1 T O2k+1,n

E(Xn-kll]:n) = D)

= Qkg,n = Xn

Since 0 < X,, < K it is uniformly integrable, so (5.5) implies X,, — X, a.s. and
in L, and (5.5) implies X,, = E(X|F,). This implies that

b
(+) £(b) — fla) = / Xoo () do

holds when @ = k27" and b = (k + 1)27". Adding a finite number of these
equations we see (x) holds when a = k27™ and b = m2~"™ where m > k. Taking
limits and using the fact that f is continuous and |X (w)| < K we have (x) for
all a and b.

5.4. E(f|F,) is uniformly integrable so it converges a.s. and in L' to E(f|F),
which is = f since f € F.

5.5. On {liminf, .. X, < M}, X,, <M +11io0.s0
PD|Xy,...,X,) >6(M+1)>0 io.
Since the right hand side — 1p, we must have

D D {liminf X,, < M}

Letting M — oo, we have D D {liminf,, ., X,, < oo} a.s.
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5.6. If po > 0 then P(Z,41 = 0|Z1,...,Zy,) > pk on {Z,, < k} so Exercise 5.5
gives the desired result.

5.7.
E(Xp1|Fn) = Xn(a+ 8X,) + (1 - X)X,

=aX, + X, =X,

so X, is a martingale. 0 < X, < 1 so (5.5) implies X,, — X a.s. and
in L'. When X,, = 2, X,41 is either o + 8z or Bz so convergence to = €
(0,1) is impossible. The constancy of martingale expectation and the bounded
convergence theorem imply

0 = EXy = EX, — EXa
Since Xo € {0,1} it follows that P(Xoo = 1) =60 and P(Xoo =0) =1 —6.
5.8. The trinagle inequality implies
E|E(Ya|Fn) — E(Y|F)| < E|E(Yn|Fn) — E(Y|F0)| + E|E(Y | Fn) — E(Y[F)]
Jensen’s inequality and (1.1f) imply
E\E(Y,|F,) — EY|F.)| < EE(|Y, - Y||F.) =E|Y, - Y| —0
since Y, — Y in L. For the other term we note (5.6) implies

E|E(Y|Fn) — E(Y|F)| =0

4.6. Backwards Martingales

6.1. The L? maximal inequality (4.3) implies

p p
E( sup |Xm|1’)s(—) Bl X
p—1

—n<m<0

Letting n — oo it follows that sup,, |X,| € LP. Since | X, — X_|F <
2 sup | X, |? it follows from the dominated convergence theorem that X,, — X_
in LP.

6.2. Let W =sup{|Y,, = Y,u| : n,m < —N}. Wy <2Z so EWpx < oo. Using
monotonicity (1.1b) and applying (6.3) to Wy gives

limsup E(|Y, — Y_oo||Fn) < lim  E(Wy|F,) = E(WN|F_x)

n——oo
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The last result is true for all N and Wy | 0 as N ] oo, so (1.1c) implies
E(WnN|F-x) | 0, and Jensen’s inequality gives us

|E(Yo|Fn) — E(Y_oo|Fn)| < E(Y, — Y_oo||Fn) = 0 as. asn— —c0

(6.2) implies E(Y_oo|Fpn) — E(Y_oo|F-oo) a.8. The desired result follows from
the last two conclusions and the triangle inequality.

6.3. By exchangeability all outcomes with m 1’s and (n —m) 0’s have the same
probability. If we call this r then by counting the number of outcomes in the
two events we have

s
P(Xi=1,....X,=1,8, =m) = <;_k>r

Dividing the first equation by the second gives the desired result.
6.4. Exchangeability implies

-1

—1
0< (Z) BE(X;+-+ X,)? =2E(X1X2) + <Z> nEX?

Letting n — oo now gives the desired result.

6.5. Let o(z,y) = (z — y)? and define A, (p) as in (6.5). We have A,(p) =
E(o(X1, X2)|&r) so it follows from (6.3) that

E(p(X1, X2)[€n) — E(p(X1, X2)[€) = Ep(X1, X2)
since & is trivial.
4.7. Optional Stopping Theorems
7.1. Let N =inf{n: X,, > A}. (7.6) implies EXy > EXn > AP(N < o0).
7.2. Writing T instead of T} and using (4.1) we have
E(Stan — (p—q)(T An))* = c*>E(T An)
Letting n — oo and using Fatou’s lemma

E(l—(p—q)T)? <o?ET <
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so ET? < co. Expanding out the square in the first equation now we have
Xran = S%0n = 257an (@ — ) (T An) + (p — )*(T An)* — o*(T An)

Now 1 > S7an > min, S, and Example 7.1 implies E(min,, S;,)? < oo, so
using the Cauchy Schwarz inequality for the second term we see that each of
the four terms is dominated by an integrable random variable so letting n — oo
and using dominated convergence

0=1-2(p—q)ET + (p—q)*ET? — 0*ET
Recalling ET = 1/(p — ¢q) and solving gives
1 o?
w—a? - aF
so var(T) = ET? — (ET)? = % /(p — q).
7.3. (i) Using (4.1) we have

ET? =

0=ES?,, — (T An)

As n — oo, ES%,, — a* by bounded convergence, and E(T An) T ET by

monotone convergence so ET = a?.

(ii) Since &, = +1 with equal probability, £2 = &2 =1, and

E(ngn-i-ﬂ]:n) = SELE(gn-i-ll]:n) =0
E(Sn§2+1|—7:n) = SnE( 2+1|-7:n) =0
E(Sn§n+1|-7:n) = SnE(§n+1|‘7:n) =0

Substituting S,4+1 = Sn + &nt1, expanding out the powers and using the last
three identities

E((Sn+ €)' = 6(n 4+ 1)(Sn + &) +b(n + 1% + cln +1)| 7, )
=S, +65; +1—6(n+1)S; —6(n+1)+bn’+b2n+1) +cn+c
=St —6nS2+bn® +en+ (20— 6+ (b+c—5) =Y,

if b= 3 and ¢ = 2. Using (4.1) now
3E(T An)?* = E{6(T An)S2,,, — Strn —2(T An)}

Letting n — oo, using the monotone convergence theorem on the left and the
dominated convergence theorem on the right.

3ET? = 6a*>ET — a* — 2ET
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Recalling ET = a? gives ET? = (5a* — 2a?)/3.
7.4. (i) Using (1.3) and the fact that &,11 is independent of F,

E(Xp+1]|Fn) = exp(0S, — (n + 1)1(0)) E(exp(0§541)|Fn)
_ exp(6S, — n(0))

(ii) As shown in Section 1.9, ¢'(8) = ¢’ (0)/p(0) and if we let
dFy = (e /p(0)) dF

then we have

d ¢'(0) _ ¢"(6) <<p’<9> ) / 2 < / )

— = — = | 2*dFy(x) — xdFy(x >0

B o0) ~ 0)  \olb) @ )
since the last expression is the variance of Fy, and this distribution is nonde-
generate if & is not constant.

(i) VXY = exp((0/2)S, — (n/2)(6)
= X/ exp(n{u(0/2) — (0)/2})

Strict convexity and ¢(0) = 0 imply (6/2) — ¥(0)/2 < 0. X272 is martingale
. 0/2
with X,"" =1 so

/X0 = exp(n{t(0/2) — 0(0)/2}) — 0

as n — oo and it follows that X? — 0 in probability.

7.5.1f > 0 then (0) > (e’ +e79)/2 > 150 ¥(0) = Inp(f) > 0 and
Xunr = exp(0Stan — (T An)y(6)) < e’

Using (4.1), letting n — oo and using the bounded convergence theorem we
have
1 = EXzpn — Eexp(8Sr — T(6))

or since S7 =1, 1 =e’Ep(H)~T.
(ii) Setting ¢(s) = pe? + ge=? = 1/s and = = e~? we have gsz® — x + ps = 0.

Solving gives
T 14 +/1 — 4pgs?
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s — EsT is continuous on [0,1] and — 0 as s — 0 so the — root is always the
right choice.

7.6. X7An is bounded so the optional stopping theorem and Chebyshev’s in-
equality imply 1 = EX7 > e%?P(Sr < a).

7.7. Let 1 be Normal(0, 02).
N
V2ro?
1
.
V2mo?

= exp(f(c — p) + 6%0*/2)

Ee@& _ Ee@(c—u—n) _ e@(c—u) e—em €_I2/202 du

= exp(0(c — p) + %02 /2 ~(@t60%)%/20% g

since the integral is the total mass of a normal density with mean —fo2 and
variance o2. Taking 6, = 2(u — ¢)/0? we have ¢(6,) = 1. Applying the result
in Exercise 7.6 to S, — Sp with a = —Sp, we have the desired result.

7.8. Using Exercise 1.1 in Chapter 4, the fact that the 5?“ are independent of
Fr, the definition of ¢, and the definition of p, we see that on {Z,, = k}

n+1

B(p s | Fa) = B0 F) = () = o = g7

so p?n is a martingale. Let N = inf{n : Z, = 0}. (4.1) implies p® = E,(p?~r).
Exercise 5.6 implies that Z,, — oo on N = 0o so letting n — oo and using the
bounded convergence theorem gives the desired result.
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5.1. Definitions and Examples

1.1. Exercise 1.1 of Chapter 4 implies that on Z, =i >0

P(Znr = jlFn) =P ( ot
m=1

fn> = p(i,J)

since the £%F1 are independent of F,.

1.2. p%(1,2) = p(1,3)p(3,2) = (0.9)(0.4) = 0.36. To get from 2 to 3 in three
steps there are three ways 2213, 2113, 2133, so

p%(2,3) = (7)(.9)(.1 +.3+.6) = .63

1.3. This is correct for n = 0. For the inductive step note

Pu(Xnt1 =0) = Pu(Xn = 0)(1 —a) + Pu(Xn = 1)p

_(1_04){5:%+(1—a—5>" <”(O)_aiﬁ>}

so{5t - a-a-or (w0 - )}

-2 ra-a- o (w0 - )

Q
+
=)

1.4. The transition matrix is

HH HT TH TT
HH 1/2 1/2 0 0
HT 0 0 1/2 1/2
TH 1/2 1/2 0 0
TT 0 0 1/2 1/2
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Since X,, and X,, 12 are independent p?(i,j) = 1/4 for all i and j.

1.5.
AAAA AAAa AAjaa Aa,Aa Aaaa aa,aa

AAAA 1 0 0 0 0 0
AAAa 1/4 1/2 0 1/4 0 0
AA aa 0 0 0 1 0 0
Aa,Aa 1/16 1/4 1/8 1/4 1/4  1/16
Aajaa 0 0 0 1/4 1/2 1/4
aa,aa 0 0 0 0 0 1

1.6. This is a Markov chain since the probability of adding a new value at time
n+1 depends on the number of values we have seen up to time n. p(k,k+1) =
1—k/N, p(k,k)=k/N, p(i,j) = 0 otherwise.

1.7. X, is not a Markov chain since X,, 11 = X,, +1 with probability 1/2 when
X, =S, and with probability 0 when X, > S,.

1.8. Let il7-..7in€{_1,1} a,ndN: |{m§n'zm:1}|'
P(Xlzlh’Xn:ln):/HN(l—e)n_NdQ

P(Xl :ilu'-'an :inaX’ﬂ-i-l = 1) = /6N+1(1 _e)n_Nde

NOW fol ;[;m(l — ;C)k d(E = m'kl/(m + k + 1)| S0

(So+D)/(n+2)!  Sp+1
Sl/n+1)! n+2

P(Xpy1 =1Xy =i1,..., Xpn =in) =

(ii) Since the conditional expectation is only a function of S, (1.1) implies that
S, is a Markov chain.

5.2. Extensions of the Markov Property

2.1. Using the hint, 14 € F,, the Markov property (2.1), then E,(15|X,) €
o(Xn)
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2.2. Let A = {x: P,(D) > 0}. The Markov property and the definition of A
imply P(D|X,,) > 6 on {X,, € A}. so (2.3) implies

P{X, € Ao} —{X,=aiol})=0

Since § > 0 is arbitrary the desired result follows.
(ii) Under the assumptions of Exercise 5.5 in Chapter 4, h(X,) — 0 implies
X, — oo.

2.3. Clearly, P,(X,, = y) = Yo _ Pu(Ty, = m,X,, = y). When m = n,
P.(T, = n, X, =y) = P.(T, = n) = P.(T, = n)p°(y,y). To handle m < n
note that the Markov property implies

Po( Xy =y|Fn) = Px(l(anmzy) 0 O0m|Fm) = Px,,(Xn—m =)

Integrating over {T, = m} € F,,, where X,, = y and using the definition of
conditional expectation we have

Pp(Ty =m, X,y = y) = Ex(1yx,=yy; Ty = m)
= Pw(Ty = m)Pu(Xn—m = y) = Pm(Tu = m)pnfm(%y)

2.4. Let T = inf{m > k : X,,, = z}. Imitating the proof in Exercise 2.3 it is
easy to show that

Pe(Xpm=2) =Y Pu(T = 0p" “(z,)
=k

Summing from m = k to n + k, using Fubini’s theorem to interchange the sum,
then using the trivial inequalities p’(z,2) > 0 and P,(T < n+ k) <1 we have

n+k n+k m
S P(Xp=x)=Y_ Y PuT=0p" " (z,2)
m=k m=k {=k

n+k n+k
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2.5. Since P, (7¢ < 00) > 0 there is an n(z) so that Py(7¢ < n(z)) > 0. Let

N = < = min_ P, <N)>0
mrensazccn(x) 00 €= min. »(Tc < N)

The Markov property implies
Pm(TC o e(kfl)N > N|]:(kfl)N) = PX(k—l)N (TC > N)

Integrating over {7¢ > (k—1)N} using the definition of conditional probability
and the bound above we have

Py(rc > kN) = Bx (Lioong yw>myiTe > (k= N)
=F, (PI(TC o e(kfl)N > N|—7:(k71)N)§ TC > (k — 1)N)

=F, (PX(k—l)N (tc > N)j10 > (k — 1)N)
<(1—¢€)Py(re¢ > (k—1)N)

from which the result follows by induction.

26. (i) If o ¢ AU B then 1(;, <) 001 = 1(;,<7,). Taking expected value we
have
Pz(TA < TB) = E:E(l(‘rA<TB) © 91)

= Em(Ez(l(TA<TB) 001|F1)) = E.h(Xy)

(ii) To simplify typing we will write T for 7aup. On {T > n} € F,, we have
X(nt1ar = Xn41 so using Exercise 1.1 in Chapter 4, the Markov property and
(i) we have

E(h(XnAT)u:n) = E(h(XnJrl)u:n) = E(h(Xl) ° 9n|-7:n)
= Ex, h(X1) = h(X,) = h(XnaT)

On {T < n} € F, we have X, 1yar = Xnuar € Fp s0 using Exercise 1.1 in
Chapter 4 we have

E(h(X(nJrl)/\T)lj:n) = E(h(Xn/\T”]:n) = h(Xn/\T)

(iii) Exercise 2.5 implies that T' = 74up < 00 a.s. Since S— (AU B) is finite, any
solution h is bounded, so the martingale property and the bounded convergence
theorem imply

hz) = Exh(Xpar) — Exh(X7) = Pe(t4 < 7B)

2.7. (i) 0 = EyX,, and X,, > 0 imply Py(X, = 0) = 1. Similarly. N = EyX,,
and X,, < N imply Py (X,, = N) =1.
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(ii) Exercise 2.5 implies P, (19 A 7y < oo) = 1. The martingale property and
the bounded convergence theorem imply

T = Em(X(TQ/\TN/\TL))
— E, X(ro ATn) = NPy (Tn < T0)
2.8. (i) corresponds to sampling with replacement from a population with ¢ 1’s
and (N — i) 0’s so the expected number of 1’s in the sample is i.

(ii) corresponds to sampling without replacement from a population with 2¢ 1’s
and 2(N — i) 0’s so the expected number of 1’s in the sample is i.

2.9. The expected number of A’s in each offspring = 2 times the fraction of A’s
in its parents, so the number of A’s is a martingale. Using Exercise 2.7 we see
that the absorption probabilities from a starting point with k A’s is k/4.

2.10. (i) If ¢ € A, 74 001 = 74 — 1. Taking expected value gives
g(x) —1=E,(ta—1)=E,(ra00)
= EmE;E(TA o 91|—7:1) = Ewg(Xl)

(ii) On {74 > n} € Fu, (X (nt1)ara) + (n+1) A4 = g(Xpny1) + (n + 1), s0
using Exercise 1.1 in Chapter 4, and (i) we have

Eo(9(Xntyara) + (n+ 1) A7alFn) = Eo(9(Xnta) + (n 4 1) Fn)
= E(Q(Xn-i-l)l]:n) + (7’L+ 1) = g(Xn) -1+ (TL+ 1) = g(Xn) +n

On {74 <n} € Fu, (X (nt1)ara) T (n+1)ATA = g(Xpars) +(nATA), so using
Exercise 1.1 in Chapter 4, we have

EI(Q(X(nJrl)/\TA) + ((n+ 1) ATa)|Fn) = Ex(9(Xnara) + (0 A Ta)|F)
= g(Xnara) + (R ATA)

(iii) Exercise 2.5 implies Py(74 > kN) < (1 —¢)* for all y ¢ A so E,74 < <.
Since S — A is finite any solution is bounded. Using the martingale property,
the bounded and monotone convergence theorems

g((E) = Ew(g(Xn/\TA) + (n A TA)) - EmTA
2.11. In this case the equation (*) becomes
g(H,H)=0

1 1

1

1 1
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Comparing the second and fourth equations we see g(H,T) = g(T,T). Using
this in the second equation and rearranging the third gives

g(T,T)=2+g(T,H)
g(H,T)=29(T,H)—2

Noticing that the left-hand sides are equal and solving gives ¢g(T,H) = 4,
g(H,T)=g(T,T) =6, and

1
ENi = 7(4+6+6) =1

2.12. (ii) We claim that

P(IJ = 1|I]+1 == l'j+1, P ,Ik == lk) = 1/]
To prove this note that if n = inf{m > j : 4, = 1} then the conditioning
event tells us that when the chain left n it jumped to at least as far as j. Since

the original jump distribution was uniform on {1,...,n — 1} the conditional
distribution is uniform on {1,...,5}.

5.3. Recurrence and Transience

3.1. vy =wv100pR,_,. Let v be one of the countably many possible values for the
v;. Since X (Rg—1) = y a.s., the strong Markov property implies

Py(vl © 6‘ka1 = ’U|'7:Rk71) = Py(vl = U)

This implies vy, is independent of Fr, , and hence of vy,...,vp_1

3.2. (i) follows from Exercise 2.3. To prove (ii) note that using (i), Fubini’s
theorem, and then changing variables in the inner sum gives

o0 n
n __ n
UpS" = g g fmUn—ms

NE

u(s) — 1=
n=1 n=1m=1
= Z Z Jm8 ™ Up—ms™ "
m=1ln=m
=D fus™ Y uns™ = fls)uls)
m=1 k=0

79
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3.3. If h(z) = (1 — 2)~ /2. Differentiating we have

B (z) = %(1 —x)73/?
" _ l § _ _5/2
() — M) em)2
R (x) = - 4m(l )

Recalling h(z) = > oo h(™)(0)/m! we have

m

= [2m _
u(s) =y ( )p’”q’”s2m = (1 —4pgs®)~'/?

m=0

so using Exercise 3.2 f(s) =1 — 1/u(s) = 1 — (1 — 4pqs?)*/2.
(iii) Setting s = 1, we have Py(Tp < oo) = 1 — (1 — 4pq)*/2.

3.4. The strong Markov property implies
P,(T. 001, < oo|Fr,) = Py(T. < oc0) on {T, < oo}
Integrating over {T,, < oo} and using the definition of conditional expectation

P,(T. < 00) > P,(T. 0 01, < c0)

Py(T. 001, < oo|Fr,); Ty < o0)
P,(T, < 00); T, < 0)

P.(Ty < 00)Py (T, < 00)

Eac(
Ex(

x

3.5. pzy > 0 for all z,y so the chain is irreducible. The desired result now
follows from (3.5).

3.6. (i) Using (3.7) we have

Y (20/18)™  (20/18)' — (20/18)!
Py (Tyo < Tpp) = 23322(20/18)’” "~ (20/18)39 — (20/18)1

Multiplying top and bottom by 20/18 and calculating that (20/18)2?" = 8.225,
(8.225)% = 67.654 we have

7.225

— =0.1084
66.654 0108

Poo(Tyo < Tpp) =



Section 5.3 Recurrence and Transience 81

(ii) Using (4.1), rearranging and then using the monotone and dominated con-
vergence theorems we have

2
E X1pan + —
20 ( Tan T+ 33

Eoo(T An) =380 — 19E20(X1pn)
BT = 380 — 19 - 40 - Pyo(Tyo < Tp) = 297.6

(T/\n)> =20

3.7. Let 7 = inf{n > 0 : X,, € F}, e = inf{p(z) : = € F}, and pick y so
that p(y) < e. Our assumptions imply that Y;, = ¢(X,-) is supermartingale.
Using (4.1) in Chapter 4 now we see that

o(y) > Eyo(Xnpar) > ePy(T < n)

Letting n — oo we see that P, (7 < 00) < ¢(y)/e < 1.
3.8. Writing p, = 1/2 + ¢, /x we have
E X7 —2% = ((z+1)" —2%) pe + ((z = 1)* = 2%) ¢a
= S (@)~ 204 (= 1))
+ (@ + )" =2} + o = (2= 1))
A little calculus shows

1

alz+y)* tdy ~ ax®!

(z+ 1) —a% =

J
(@ +1)% =22 + (¢ - 1)% = /0 of(z+y)* = (2 -1+ "}y
~a(a—1)z°72

This implies that when «x is large

a—1

B, XY — 2%~ az®? { + 20}
If C' < 1/4 then by taking « close to 0 we can make this < 0. When C' > 1/4

we take o < 0, so we want the quantity inside the brackets to be > 0 which
again is possible for « close enough to 0.

3.9. If f > 0 is superharmonic then Y,, = f(X,,) is a supermartingale so Y,
converges a.s. to a limit Y. If X, is recurrent then for any z, X,, = = i.0., so
f(z) =Y, and f is constant.
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Conversely, if the chain is transient then P, (7T, < oo) < 1 for some z and
f(z) = P,(T, < c0) is a nonconstant superharmonic function.

310. E, Xy =pr+A<zif A< (1 —p)x.
5.4. Stationary Measures

4.1. The symmetric form of the Markov property given in Exercise 2.1 implies
that for any initial distribution Y,, is a Markov chain. To compute its transition
probability we note

Py(Yy =, Yipiq =
PulVunis = ylYim = 2) = 224 +1 =)

Pu(Yim = )
_ Pu(Xn—(mi1) = Y)Pu(Xn—m = xanf(erl) =y)
Pu(Xn-m =)
_ 1@ply, ©)
p()

4.2. In order for the chain to visit j before returning to 0, it must jump to j or
beyond, which has probability Zzozj fr+1 and in this case it will visit j exactly
once.

(ii) Plugging into the formula we have

glii+1) = % —PE it Es i)
ati.0) = OB — pre—i 1) > )

which a little thought reveals is the transition probability for the age of the
item in use at time n.

4.3. Since the stationary distribution is unique up to constant multiples

fy(2) fa(2)

py(y)  pa(y)

Since 1y (y) = 1 rearranging gives the desired equality.

4.4. Since simple random walk is recurrent, (4.4) implies that the stationary
measure u(x) = 1 is unique up to constant multiples. If we do the cycle trick
starting from 0, the resulting stationary measure has 1o(0) = 1 and po(k) =
the expected number of visits to k before returning to 0, so po(k) = 1.



Section 5.4 Stationary Measures 83

4.5. If welet a = P,(Ty, < T;) and b = P, (T, < T}) then the number of visits to
y before we return to x has P,(N, = 0) =1—a and P,(Ny = j) = a(l1—b)""1b
for j > 1, so EN; = a/b. In the case of random walks when « = 0 we have
a="b=1/2|y|.

4.6. (i) Tterating shows that

Hyp"(y,z)

qn(x, y) = M(UC)

Given x and y there is an n so that p"(y,z) > 0 and hence ¢"(z,y) > 0.
Summing over n and using (3.3) we see that all states are recurrent under gq.
(ii) Dividing by u(y) and using the defintion of ¢ we have

b = 20 = 5 gty a) A

—~

€T

~

~

x

so h is nonnegative superharmonic, and Exercise 3.9 implies that it must be
constant.

4.7. By (4.7) the renewal chain is positive recurrent if and only if EgTy < oo
but X; = k implies Ty = k+ 1 so EoTo = >, k.

4.8. Let n = inf{m : p™(x,y) > 0} and pick z1,...,2,-1 # x so that

p(x, z1)p(z1,22) - p(Tn-1,9) >0
The Markov property implies

EwT;E > Ew(T;EyXl =T1y.-- 7Xn—1 = xn—lan = y)
> p(z, z1)p(z1,22) - p(Xn—1,Y)EyTy

so B, T, < oo.

4.9. If p is recurrent then any stationary distribution is a constant multiple of
and hence has infinite total mass, so there cannot be a stationary distribution.

4.10. This is a random walk on a graph, so u(i) = the degree of i defines a
stationary measure. With a little patience we can compute the degrees for the
upper 4 x 4 square in the chessboard to be

o W
SO W
0 0O O =
o O O =~
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Adding up these numbers we get 84 so the total mass of u is 336. Thus if 7
is the stationary distribution and ¢ is a corner then m(c) = 2/336 and (4.6)
implies E.T, = 168.

4.11. Using (4.1) from Chapter 4 it follows that
x> Ey (Xpar +€(nAT)) > €Ex(T An)

Letting n — oo and using the monotone convergence theorem the desired result
follows.

4.12. The Markov property and the result of the previous exercise imply that

x 1
EoTo—1 = 0,2) Byt < 0,2)% = 2B, X
0do zm:p( ,T) T_g:p( l’)e . 1 <0

5.5. Asymptotic Behavior

5.1. Making a table of the number of black and white balls in the two urns

L R
black n b—n
white m—-—n m—(b—n)

we can read off the transition probability. If 0 < n < b then

m—-—n b—n

p(n,n+1) = — —

n m-+n-—=

—1) =
pn,n—1) m m

5.2. {1,7}, {2,3}, {4,5,6).

5.3. Let Z be a bounded invariant random variable and h(x) = E.Z. The
invariance of Z and the Markov property imply

EM(ZU:n) = EM(Z © enlfn) = h(Xn)

so h(X,,) is martingale and h is a bounded harmonic function.

Conversely if h is bounded and harmonic then h(X,,) is a bounded martingale.
(2.10) in Chapter 4 implies Z = lim,,_ o h(X,,) exists. Z is shift invariant since
Z o6 =limy_ o0 h(Xn41). (5.5) in Chapter 4 implies h(X,) = E(Z|F,).
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5.4. (i) &y corresponds to the number of customers that have arrived minus
the one that was served. It is easy to see that the M/G/1 queue satisfies
Xni1 = (Xp +&ne1)T and the new defintion does as well.

(ii) When X,,,—1 = 0 and &,, = —1 the random walk reaches a new negative
minimum so

Hm<n:Xn_1=0¢&,=-1} = (min Sm)

The desired result follows once we show that
n! minS’m —FE&n=pn—1

To do this note that the strong law of large numbers implies that S, /n — p—1.
This implies that

lim sup n ' min S, < w—1

n—00 m<n

To argue the other inequality, note that if € > 0 and n > N then S,, > (u —
1)(1 + €)n. When n is large the minimum no longer comes from the n < N and
we have

n~tmin S, > (n—1)(14¢€)

m<n

5.5. (i) The fact that the ka are ii.d. follows from Exercise 3.1, while (4.3)
implies

EIV{) < BV = [ 150 malay)
(ii) The strong law of large numbers implies

ZVJ—»EV,{ a.s.
k=1

1
m

Taking m = K,, and noting that the renewal theorem implies K,,/n — 1/E, T,
a.s. the desired result follows.
(iii) From Exercise 6.14 in Chapter 1 we see that if EV! < o then

1
— max V,lf' —0 as.
n 1<m<n

It is easy to see that K,, < n and
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and the desired result follows.

5.6. (i) From (ii) in Exercise 5.5, we know that K,/n — 1/E,T,. Since the
ka are i.i.d. with Eka =0 and E(ka)2 < oo the desired result follows from
Exercise 4.7 in Chapter 2.

(i) E(V,Jﬂ)2 < oo implies that for any € > 0

IFy2 S (2 50
;P{(Vk )2 > k}<

so the Borel-Cantelli lemma implies P(Vkm > evVkio.) = 0. From this it
follows easily that '
n~1/? sup Vkm —0 as.
k<n

Since K,, < n the desired result follows easily.
k
5.7. Let S = You’y 1(x,.—=). Applying (i) in Exercise 5.5 to f = 1. then
using the strong law and (4.4) we have
m(z)

Si/k — py(z) = ) a.s.

If Tyk <n< T;*l then

&<Nn(z) < SkJrl k"—l
E— k T k41 k

Letting k£ — oo now we get the desired result.

5.8. (i) Breaking things down according to the value of J

P X = 2) = pmlx, 2) + P X =2,J =)

:ﬁm(xuz)"i_ PI(Xj:vaj-l-l#yu'-'aXm—l#yuXm:Z)

If we let Ay = {X1 #vy,...,Xk—1 # y, X = z} then using the definition of
Ay, the definition of conditional expectation, the Markov property, and the
definitions of p/ and p 7
Po(Xj =y Xj1 # Yy, X1 # Y, Xon = 2) = Ex(1a,,_; 0055 X; =y)
= Ep(Ex(1a,,_; 0 051F;); X; =)

= Eo(Py(Am—j); X; =y) = P/ (2,9)DPm—; (. 2)
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Combining this with the first equality and summing over m

n n n m—1
PR RCOED I ACDED DN ACH AR
m=1 m=1 m=1 j=1

Interchanging the order of the last two sums and changing variables k = m — j
gives the desired formula.

(ii) Py(Tw < Ty) > oo Pm(z,2) < py(z) < oo and recurrence implies that
Zmzlp (x,y) = 00 so we have

n

Z Pm (2, 2) Z p"(x,y) — 0

To handle the second term let a; = p?(z,y), bm = >4, Pr(y, 2) and note that
b — py(2) and a,, <1 with Y °_ am—ooso

n—1 n
D aiba g [ D am = py(2)
j=1 m=1

To prove the last result let € > 0, pick N so that |b,, — py(2)| < € for m > N
and then divide the sum into 1 <j<n—Nandn—-N <j<n.

5.9. By aperiodicity we can pick an N, so that for all n > N, p"(z,z) > 0. By
irreducibility there is an n(z,y) so that p™®¥)(z,y) > 0. Let

N = max{N,,n(z,y) : z,y € S} < 00
by the finiteness of S.
p*N (@, y) > p Y (2, y)p*N ) (y, ) > 0
since 2N — n(z,y) > N.

5.10. If € = inf p(z,y) > 0 and there are N states then

P(Xn-i-l = Yn+l|Xﬂ =z,Y, = y) = Zp(ac,z)p(y,z) > 62N

so P(T>n+ 1T >n) < (1 —¢€2N) and we have P(T > n) < (1 — ¢2N)™.

5.11. To couple X, +,, and Y,1,, we first run the two chains to time n. If
X, =Y, an event with probability > 1 — a,, then we can certainly arrange
things so that X, 1., = Y,4+m. On the other hand it follows from the definition
of ay, that

P(Xpim # Yoim|Xn =k, Y, =0) < ay,
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5.6. General State Space

6.1. As in (3.2)

Zf)"(a,a) = ZPa(Rk < 00)

n=1 k=1
R _ Py(R< )
_;PQ(R<OO)]€— - PR <o)

6.2. By Example 6.1, without loss of generality A = {a} and B = {b}. Let
R = {z: ppy > 0}. If a is recurrent then b is recurrent, so if € R then (3.4)
implies x is recurrent. (i) implies py, > 0. If y is another point in R then
Exercise 3.4 implies pyy > pzpppy > 0 so R is irreducible. Let T'= S — R. If
z € T then py, = 0 but p.p > 0 so z is transient by remarks after Example 3.1.

6.3. Suppose that the chain is recurrent when (A, B) is used. Since P, (74 <

o) > 0 we have P, (14 < o0) > 0 and (6.4) implies P, (X, € A’ i.0.) = 1. (ii)
of the definition for (A’, B’) and (2.3) now give the desired result.

6.4. If E&, < 0 then P(S, <0 for some n) =1 and hence
P(W,, =0 for some n) =1

If E¢, > 0 then S, — oo a.s. and P(S,, > 0 for all n) > 0, so we have P(W,, >
0 for all n) > 0.

6.5. V1 = 0Vh + &1 Let N be chosen large enough so that E|é;| < (1 —0)N. If
|z| > N then
Ey[Vi] < Olx| + El&i] < [x]

Using (3.9) now with ¢(z) = |z| we see that P,(|V,,] < N) =1 for any z. From
this and the Markov property it follows that P, (|V,| < N i.0.) = 1. Since

inf P,(Va=a)>0

yiy|<N

it follows from (2.3) that V,, is recurrent.

6.6.
El¢]
(0 =)z

If z is large >0, ﬁﬂm < 1so Py(V,, > ~"x for all n) > 0.

Po(Vi < 7z) < Pl < (7~ 0)2) <
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6.7. Let F,, = 0(Yo,...,Y,). In this case |Y,,| = B+v/|Yn_1|/xn| where x,, is a
standard normal independent of F,,_1 The sign of Y,, is independent of F,,_1
and |Y;,| so it is enough to look at the behavior of |Y,,|. Taking logs and iterating
we have

log|Yy| = log(ﬁlxnl) + 27 log [V 1]
log(B]xnl) + 27 log(Blxn-1]) + 27> log |Ys—2|
1

n—

27 log(Blxn-m|) + 27" log | Yo
=0

3

Since F'log(8|x|) < oo it is easy to see from this representation that log |Y;,| =
a limit independent of Yy. Using P(|Y,| < K i.0.) > limsup P(|Y,| < K) and
(2.3) now it follows easily that Y}, is recurrent for any f.

6.8. Let Ty = 0 and T;, = inf{m > T},_1 + k : X,,, € Gks}. The definition of
G,s implies
P(T, < To|Th-1 <Ty) < (1-=19)

so if we let N = sup{n : T}, < T} then EN < 1/6. Since we can only have
Xm € G5 when T,, <m < T, + k for some n > 0 it follows that

ﬂ(G;w;) <k (1 + %) <2k/é

Assumption (i) implies S C Ug 1 G, 1/m S0 [i is o-finite.

6.9. If A\(C) = 0 then P, (X, € C) =0 for all n so P,(X, € C,R > n) =0
for all n and a(C) = 0. To prove the converse note that if i(C) = 0 then
P,(X, € C,R >n) =0 for all n. Now if Py(X,, € C) > 0 and we let M be
the smallest m for which this holds we have

Po(Xp €C)=Py(Xpy €C,R>M) =0

a contradiction so Py (X,, € C') =0 for all m and A\(C) =

6.10. The almost sure convergence of the sum follows from Exercise 8.8 in
Chapter 1. The sum Z is a stationary distribution since obviously {4+60Z7 =4 Z.

6.11. To prepare for the proof we note that by considering the time of the first
visit to o

Zﬁ"(:z:,oz) e (To, < 00 Z p" ( )SZ}‘)m(aa
n=1 m=0

m=0

89
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Let 7 = mp. By (6.6) this is a stationary probability measure for p. Irreducibil-
ity and the fact that # = 7p™ imply that T(«) > 0 so using our preliminary

SEDNIOE /ﬁ'(dx) > @) <> P (o)

n=1 n=1 m=0

and the recurrence follows from Exercise 6.1.

6.12. Induction implies
Vi =&+ 061+ + 0" + 0"
Y, = 0™"Yy — 0 in probability and

4

Xp o406+ + 0" — Y 07,

n=0

So the converging together lemma, 2.10 in Chapter 2 implies

Vi = i "¢,

n=0
6.13. (i) See the solution of 5.4.

(ii) Sn — My = MaxXg<k<n Sn — Sk
(iii) max(So, S1, ..., Sn) =4 max(Sy, S, ..., S,) As n — oo,

HlaX(So,Sl,...,Sn) —>H1&X(S0781,S2...) a.s.
6.14. Let F be the distribution of Y.
P(X—Y > 2) :/ P(X > 2+ y)dF(y)
0

= e_’\w/ P(X > y)dF(y) = ae™*®
0
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6.1. Definitions and Examples

1.1. If A € T then o~ 1(A°) = (¢ 1A) = A° so A° € Z. If A,, € T are disjoint
then
(p_l (UnAn) =Un Sp_l(An) = UnAn

so U, A, € Z. To prove the second claim note that the set of invariant random
variables contains the indicator functions 14 with A € 7 and is closed under
pointwise limits, so all X € 7 are invariant. To prove the other direction note
that if X is invariant and B € R then

{w:X(w)eB}={w: Xpw)eB}=p '({w: X(w) € B}
so{w: X(w)e B} eT.
1.2. (i) ¢~ '(B) = UpZ,9 "(A) C UpZop " (4) = B.
(i) ¢ 1(C) =N, "(B) = C since ¢~ 1(B) C B.
(iii) We claim that if A is almost invariant then A = B = C a.s.
To see that P(AAB) = 0 we begin by noting that ¢ is measure preserving so
P(p™"(A)Ap~"D(4)) = P(p~ e~ "V (A)Ap™"(4)])
= P(p~ "D (A)Ap™"(A))

Since P(AAp~1(A)) = 0 it follows by induction that
P(p™"(A)Ap~ "D (4)) =0

for all n > 0. Using the triangle inequality P(AAC) < P(AAB) + P(BAC) it
follows that P(AA@~"™(A)) = 0. Since this holds for all n > 1 and is trivial for
n = 0 we have -

P(AAB) <) P(AAp™"(A) =0

n=0



92 Chapter 6 Ergodic Theorems

To see that P(BAC) = 0 note that B —p~1(B) C A — ¢~ !(A) has measure 0,
and ¢ is measure preserving so induction implies P(p~"(B) — ¢~ "+t (B)) =0
and we have

P (B - ﬂi’f:m_"(B)) =0
This shows P(B — C) = 0. Since B D C the desired conclusion follows.
Conversely, if C' is strictly invariant and P(AAC) = 0 then

P~ AAC) = P(p~ (AAC)) = P(AAC) =0

so P(p 'AAA) < P(¢~'AAC) + P(CAA) = 0.

1.3. Let Q = {0,1}, F = all subsets, P assign mass 1/2 to each point, T'(w) =
1 — w preserves P and clearly there are no invariant sets other than () and .
However T? is the identity and is not ergodic.

1.4. (i) Since all the x,, are distinct, for some m < n < N we must have
|zm — xn| < 1/N. Define k; € Z so that j6 = k; + ;. By considering
two cases Xy, < x, and x, > =z, we see that either z,_,, = |z, — x| or
Tp—m = 1 — |xy — x| In these two cases we have, for k < N,

Thin-m) = k|Tn —2m| and  zpp_m) =1 = k|2, — 25|

respectively. This shows that the orbit comes within 1/N of any point. Since
N is arbitrary, the desired result follows.

(ii) Let 6 > 0 and € = dP(A). Applying Exercise 3.1 to the algebra A of
finite disjoint unions of intervals [u, v), it follows that there is B € A so that
P(AAB) < e and hence P(B) < P(A)+e. If B =47, [u;,v;) and AN[u;,v;) <
(1 = &) |v; — u4| for all ¢ then

P(4) < (1= 0)P(B) < (1= 0)(P(A) +¢) < (1-6)P(A)

a contradiction, so we must have A N [u;,v;) > (1 — 0)|v; — ;| for some 1.

(iii) Let A be invariant and § > 0. It follows from (ii) that there is an interval
[a,b) so that |AN[a,b)| > (1-9)(b—a). If 1/(n+1) < b—a < 1/n then there are
Y1,---,Yn 0 that By = ([a,b] + yx) mod 1 are disjoint. Since the x,, are dense,
we can find ng so that By = ([a,b] + 25, ) mod 1 are disjoint. The invariance
of A implies that (A + x,) mod 1 C A. Since [ANJa,b]| > (1 —§)(b — a), it

follows that
n

Al =2 n(b—a)(1-6) =

_n+1(1_6)

Since n and 0 are arbitrary the desired result follows.
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L5.If f(z) =, cke®™® then
f(%’(@) _ che2ﬂ'i2km

k

The uniqueness of the Fourier coefficients implies ¢y = coi. Iterating we see
Cl = Caip, SO if ¢ # 0 for some k # 0 then we cannot have >, i < 0o

1.6. From the definition it is clear that
= 1 1
poe la,b] Z:lu A
= n —
n+a n+b
since [ dz/(1+z) =In(1+ U) —In(1 + u). If we replace oo by N the sum is

N+a+1
N+b+1

As N — oo the right-hand side converges to p([a, b]).

)-i—l (140)—In(l+a)

1.7. To check stationarity, we let j > n and note that for any ¢, Z;, Z; 11, ..., Zi1;
consists of a partial block with a length that is uniformly distributed on 1,...n,
then a number of full blocks of length n and then a partial block n.

To check ergodicity we note that the tail o-field of the Z,, is contained in that
of the block process, which is trivial since it is i.i.d.

6.2. Birkhoff’s Ergodic Theorem

2.1. Let X}, and X}, be defined as in the proof of (2.1). The bounded conver-
gence theorem implies
P

— 0

|23 Xiy(e™w) — B(X}IT)

Writing ||Z|, = (E|Z|P)*/? and using the triangle inequality

Hz@ww<mm

£ s

L
-~ Z 1X 3 (™ w)llp + 1 E(X5 D)y < 21 X 7llp

p

IN

+ I1E(X 3Dl

IN
S
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since E| X[ (¢™w)|P = E|X},|P and E|E(X}|T)P < E|X}|P by (1.1e) in
Chapter 4.

2.2. (i) Let hy(w) = SUD,,> M |gm(w) — g(w)].

n—1 n—1
1 1
- 3 ) < Jim o 30+ (")
=E(g+hu|T)

since gy, < g+ hpy for all m > M. hyy | 0 as M T oo and hg is integrable, so
(1.1c) in Chapter 4 implies E(g + hap|Z) | E(g|Z).

ii) The triangle inequality and the convergence of g,, — ¢ in L' impl
g y g g g y

1 1
m - - m 0
Zg W) "mz:: an:: Elgm — gl —
The ergodic theorem implies

n—1
1
=D gl E(9|T)| =0
n m=0

Combining the last two results and using the triangle inequality gives the desired
result.

2.3. Let X, and X}, be defined as in the proof of (2.1). The result for bounded
random variables implies

—1
1
— X (™ E(X\|T
nmzzo m(p"w) — E(Xy|T)
Using (2.3) now on X}, we get

(sup ZXM@ w)

As M 1 oo, E| X}, | 0. A trivial special case of (5.9) in Chapter 4 implies
E(Xy|T) — E(X|T) so

) <o 'B|XY,

n—1
P (hmsup1 ZX ©"w) >E(X|I)+2a> =0

n—oo M 020
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Since the last result holds for any « > 0 the desired result follows.
6.3. Recurrence

3.1. Counting each point visited at the last time it is visited in {1,...,n}

ERy =  P(Sms1 = Sm#0,.... 8 = Sm #0) = ) g1
m=1 m=1

3.2. When P(X; >1)=0
{1,...,maXSm} CR,C {min Sm,...,maXSm}
m<n m<n m<n

If EX; > 0 then S,/n — EX; > 0so0 S, — oo and min,<, Sy, > —oo a.s. To
evaluate the limit of max,, <y Sy /n we observe that for any K

Sn
LS <1
lim < lim inf ( max. |Sk|/n> < 111rln_)sotcl)p (én%xn |Sk|/n)

n—oo n n— o0 1<k<
llisotip (Kngl%)g(nwkl/n) < (E?I?lskl/k)

3.3. p(0) = Eexp(0X;) is convex, p(f) — oo as § — —oo and the left derivative
at 0 has ¢'(0) = EX; > 0 so there is a unique 6 < 0 so that ¢(f) = 1. Exercise
7.4 in Chapter 4 implies that exp(0S,) is a martingale. (4.1) in Chapter 4
implies 1 = Eexp(8Snan). Since exp(0Syan) < e ? and S, — 00 as n — 00
the bounded convergence theorem implies 1 = e "? P(N < o00).

3.4. It suffices to show

E( > IxneniXo€ A) = P(X, € B)

1<m<Ty

To do this we observe that the left hand side is

M8

P(X()EA,Xl gA,...,Xm,1 ¢A,Xm EB)
=1

3

M

PXom €A X mi1€A,...,.X 1€ A Xy€B)=P(X € B)

3
I
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3.5. First note that (3.3) implies ET; = 1/P(Xo = 1), so the right hand side is
P(Xo=1,T1 > n). To compute the left now we break things down according
to the position of the first 1 to the left of 0 and use translation invariance to
conclude P(Ty = n) is

=Y P(X_=1X;=0forj€(-mn),X,=1)

m=0

Y P(Xg=1,X;=0forj€ (0,m+n), Xpin=1)
m=0

:P(onlalen)

6.6. A Subadditive Ergodic Theorem

6.1. (1.3) implies that the stationary sequences in (ii) are ergodic. Exercise 3.1
implies EXo,, =Y .0 _ P(S1 #0,...,5, #0). Since P(S1 #0,...,5, #0) is
decreasing it follows easily that EXg ,/n — P( no return to 0 ).

6.2. (a) EL; = P(X; = Y1) = 1/2. To compute ELs let No = [{i < 2 :
X; = Y;} and note that Lo — Ny = 0 unless (X1, X»,Y7,Y2) is (1,0,0,1) or
(0,1,1,0). In these two cases which have probability 1/16 each Ly — N = 1 so
ELy = ENy+1/8 =9/8 so EL»/2 = 9/16

(b) The expected number of sequences of length K is (;)22_}{ . Taking K = an

using Stirling’s formula m! ~ m™e~"™+/27wm without the term under the square
root we have that the above

~ n2n2—an
~ (an)2en((1 — a)n)Q(lfa)n

_ (a2a(1 _ a)2(1—a)2a)—n
From the last computation it follows that
1 n\2
—log (( ) 2_"“> — —2aloga — 2(1 — a)log(l —a) — alog?2
n na

When a = 1 the right hand side is —log2 < 0. By continuity it is also negative
for a close to 1.
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6.7. Applications

7.1. It is easy to see that

E(X14+ Y1) =/ P(X1 4+ Y1 >t)dt =/ e 12t = \/n/2
0 0
Symmetry implies EX; = EY; = /mn/8. The law of large numbers implies
Xn/n,Yn/n — /m/8. Since (X1,Y1),(X2,Y2),... is increasing the desired
results follows.

7.2. Since there are (2) subsets and each is in the correct order with probability

1/k! we have
n n nk \/521C
BJi < @/’“SW‘“W

where in the last equality we have used Stirling’s formula without the vk term.
Letting k = a/n we have

1

\/ﬁlogEJ,? — —2aloga+2a <0

when a > e.

7.3. It is immediate from the definition that £Y; = 1. Grouping the individuals
in generation n+1 according to their parents in generation n and using FY; =1
it is easy to see that this is a martingale. Since Y,, is a nonnegative martingale
Y, — Y < co. However, if exp(—6a)/up(d) = b > 1 and Xo,, < an then
Y, > b" so this cannot happen infinitely often.

7.4. Let ky, be the integer so that t(ky,, —m) = apm. Let X,, ,, be the amount
of time it takes water starting from (k,,, —m) to reach depth n. It is clear
that Xom + Xm,n > Xo,n Since EX(;'C1 < oo and X, > 0 (iv) holds. (6.1)
implies that X ,,/n — X a.s. To see that the limit is constant, enumerate the
edges in some order (e.g., take each row in turn from left to right) eq, ez, ... and
observe that X is measurable with respect to the tail o-field of the i.i.d. sequence
T(el), T(eg), ce

7.5. (i) a1 is the minimum of two mean one exponentials so it is a mean 1/2
exponential. (ii) Let S, be the sum of n independent mean 1 exponentials.
Results in Section 1.9 imply that for a < 1

1
—log P(S, <na) — —a+1+loga
n

Since there are 2™ paths down to level n, we see that if f(a) =log2 —a+ 1+
loga < 0 then vy < a. Since f is continuous and f(1) = log2 this must hold for
some a < 1.
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7 Brownian Motion

7.1. Definition and Construction

1.1 Let A= {A = {w: (w(t1),w(t2),...) € B} : B € RU:2-11. Clearly, any
A € A is in the o-field generated by the finite dimensional sets. To complete
the proof, we only have to check that A is a o-field. The first and easier step is
to note if A = {w : (w(t1),w(t2),...) € B} then A° = {w : (w(t1),w(t2),...) €
B¢} € A. To check that A is closed under countable unions, let A, = {w :
(W), w(ty),...) € By}, let t1,ta,... be an ordering of {¢7, : n,m > 1} and
note that we can write 4, = {w : (w(t1),w(t2),...) € Ey} so Up4, = {w :
(w(t1),w(ta),...) E U E,} € A.

1.2. Let A, = {w : there is an s € [0, 1] so that |B, — Bs| < C|t — s|” when
[t—s] <k/n}. For1<i<n—k+1let

K,nzmax{B(’H)—B(M) j:O,l,...k—l}
n n

B, ={ at least one Y; , is < (2k —1)C/n"}

Again A,, C B, but this time if v > 1/2 4+ 1/k

P(B,) < nP(|B(1/n)| < (2k = 1)C/n")*
<nP(|B(1)| < (2k = 1)Cn/277)k

S C/nk(1/2—’y)+1 -0

1.3. The first step is to observe that the scaling relationship (1.2) implies

(*) Am.,n g 2771/2A1,0
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while the definition of Brownian motion shows EA} ; = ¢, and E(Af  —1)* =
C < oo. Using (%) and the definition of Brownian motion, it follows that if
k #m then A} | —t27" and A} , —127" are independent and have mean 0 so

2

E{ Y @, e = 3 EB(@A%,-t27) =20027

1<m<2n 1<m<2n
where in the last equality we have used (x) again. The last result and Cheby-
shev’s inequality imply
Pl| > AL,-tl>1/n|<Cn’2
1<m<2n

The right hand side is summable so the Borel Cantelli lemma (see e.g. (6.1) in
Chapter 1 of Durrett (1991)) implies

rP Z A,Qn)n —t| > 1/n infinitely often | =0

m<2n

7.2. Markov Property, Blumenthal’s 0-1 Law

2.1. Let Y = 1(1,>¢) and note that Tyo#; = R—1s0 Y 06y = 1(gr>144). Using
the Markov property gives

PI(R > 1+t|.7:1) = PBl(TO > t)

Taking expected value now and recalling P, (B = y) = p1(z,y) gives
P> 140) = [ o) P, (T > ) dy

2.2. Let Y = 1(g,>1—¢) and note that Y o 6y = 1(;<;. Using the Markov
property gives
Po(L < t|_7:t) = PBt(TO >1 —t)

Taking expected value now and recalling Py(B; = y) = p:(0,y) gives

BL<t) = [ 0P > 1=ty
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2.3. (2.6), (2.7), and the Markov property imply that with probablity one there
are times s; > t1 > so > to... that converge to a so that B(s,) = B(a) and
B(ty) > B(a). In each interval (s,1, sp) there is a local maximum.

2.4. (i) Z = limsup, o B(t)/f(t) € Fy so (2.7) implies Py(Z > ¢) € {0,1} for
each ¢, which implies that Z is constant almost surely.

(ii) Let C < o0, t,, | 0, Ay = {B(tn) > C\/t, forsomen > N} and A =
Ny AN. A trivial inequality and the scaling relation (1.2) implies

Po(AN) > PQ(B(tN) > C\/E) = Po(B(l) > C) >0

Letting N — oo and noting Ay | A we have Py(A) > Py(By > C) > 0. Since
A€ Ff it follows from (2.7) that Py(A) = 1, that is, limsup,_, B(t)/vt > C
with probability one. Since C' is arbitrary the proof is complete.

7.3. Stopping Times, Strong Markov Property

3.1 Ifm2™ <t < (m+1)27" then {S, <t} ={S <m27"} € Fa-» C Fi.

3.2. Since constant times are stopping times the last three statements follow
from the first three.

{SAT <t} ={S <t} U{T <t} € F.

{SVvT <t} ={S<t}n{T <t} eF

{S +T < t} = Uq,rGQ:q+r<t{S < q} n {T < T} S .7:15

3.3. Define R, by Ry = Ty, R, = R,_1 V T,. Repeated use of Exercise 3.2
shows that R, is a stopping time. As n T oo R,, T sup,, I}, so the desired result
follows from (3.3).

Define S,, by S1 = Ty, S, = Sn—1 A T,. Repeated use of Exercise 3.2 shows
that S, is a stopping time. As n T oo S, | inf,, T}, so the desired result follows
from (3.2).

limsup,, T, = inf, sup,,>,, Tm and liminf,, T), = sup,, inf,,>n Tin so the last
two results follow easily from the first two.

3.4. First if A € Fg then
An{S<t}=U,(AN{S<t—1/n}) e F

On the other hand if AN{S < t} € F, and the filtration is right continuous
then
AN{S <t} = (An{S<t+1/n}) €Ny Fop1jn=F:

35.{R<t} ={S<t}NAe€F since A€ Fg
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3.6. (i) Let r = s At
{S<t}n{S<st={S<r}eF CFs
{S<t}n{S<s}={S<r}teF. CFs

This shows {S < t} and {S < t} are in Fg. Taking complements and inter-
estions we get {S > t}, {S > t}, and {S =t} are in Fg.

(i) {S <TIN{S <t} = Uyt {S < g} N{T > q} € Fy by (i), s0 {S < T} € Fs.
{S<TInN{T <t} =Ug{S < g}n{g<T <t} € F; by (i),s0 {S < T} € Fr.
Here the unions were taken over rational g. Interchanging the roles of S and
T we have {S > T} in Fs N Fr. Taking complements and interestions we get
{§>T},{S<T}, and {S =T} are in Fg N Fr.

3.7.If A € R then

{B(Sn) € A} N{Sn <t} = Up<me<ani{Sn =m/2"} N{B(m/2") € A} € F;
by (i) of Exercise 3.6. This shows {B(S,) € A} € Fg, so B(S,) € Fs, . Letting
n — oo and using (3.6) we have Bg = lim,, B(S,,) € N, Fs, = Fs.

7.4. Maxima and Zeros

4.1. (i)Let Yy(w) =1if s < t and v < w(t — s) < v, 0 otherwise. Let

Y(w):{l ifs<t,2a—v<wlt—s)<2a—u
° 0 otherwise

Symmetry of the normal distribution implies E,Y, = E,Y;, so if we let S =
inf{s < t: Bs = a} and apply the strong Markov property then on {S < oo}

E.(Ys 00g|Fs) = E,Ys = E,Ys = E,(Ys 0 05| Fs)

Taking expected values now gives the desired result.
(ii) Letting M, = maxo<s<¢ Bs we can rewrite (4.7) as

Py(M; > a,u < By <v) = Py(2a —v < By < 2a — u)

Letting the interval (u,v) shrink to 2 we see that

1
Py(My > a,B; =) = Py(B; = 2a — 2) = \/ﬁe*@afx)?/%
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Differentiating with respect to a now we get the joint density

2(2a — ) o (20-)/2t

PO(Mt:avBt:x): \/ﬁ
Y

4.2. We begin by noting symmetry and Exercise 2.1 imply

[e'e) t
B0 =2 [ poy) [ BT =s)dsdy
0 0

t [e’e]
- / 2 / p1(0,9)Py(To = s) dy ds
0 0

by Fubini’s theorem, so the integrand gives the density Py(R = 1 +t). Since
P,(To =t) = Py(T, =1), (4.7) gives

> 1 2 1 2
P(R=1+t :2/ e Y /2 e Y /2ty
o ) . Ol Yy

1 > 2 1 t
- - -y (1+t)/2t g, — -
27t3/2 /0 ve LD EYP (1+1¢)

7.5. Martingales

5.1. It follows from (5.6) that
cosh(6B;)e0"/2 — % [exp(9B, — 62/2) + exp(—0B, — (—6)°/2))}
is a martingale. (5.1) and this imply
1=FEy (cosh(BTAt)e_92(TM)/2)
Letting t — oo and using the bounded convergence theorem we have

1 = cosh(a)Fy (engT/Q)

5.2. Tt follows from (5.1) and (5.6) that

1= Eyexp(0B,ne — 0*(T A1)/2)
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6 = b+ /b2 + 2\ is the larger root of b — 6%/2 = —X and By, < a+b(T At)
so using the bounded convergence theorem we have

1= Ey (exp(f(a + br) — 6°7/2); 7 < 00)

Substituting in the value of 6 and rearranging gives the desired result.

5.3. (1) T, = o when T, < Ty and T, = 0 + T, 0 0, when T, < T,,. Using the
defintion of conditional expectation and (1.3) in Chapter 4 we have

By (7T, < 1) = By (By (e M40 | £, )T, < T,)
=FE, (e VE, (e 00, F,) 1 Ty < T.)

Since B, = b on T}, < T, the strong Markov property implies
E, (ef)‘T“ o 90‘ .7-'0) =E (eiATa)

and completes the proof of the formula.

(ii) Letting u = E, (e *; T, < T}) and v = E,(e=*?; T}, < T,) then using (4.4)
we can write the equations as

s‘
>
N

exp(—(z — a)V2X) = u + vexp(—(b — a)
exp(—(b — 2)V2X\) = v + uexp(—(b — a)

e
R

Multiplying the first equation by exp((b — a)v/2)) and subtracting the second
gives

sinh((b — 2)V2X) = sinh((b — a)V2\)u
One can solve for v in a similar way.
5.4. (5.1) and (5.8) imply
EBU At —6(UAt)B(U At)?) = —3E(U At)?
By putting (a,b) inside a larger symmetric interval and using (5.5) we get
EU < oo. Letting t — oo, using the dominated convergence theorem on the

left hand side, and the monotone convergence theorem on the right gives £ (B,4J—
6U B}) = —3EU? so using Cauchy-Schwarz

EU? < 2EUBZ < 2(EU2)"? (EBY)?

and it follows that EU? < 4EB¢.
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5.5. p(z,y) = (2mt)~/2e~w=2)/2t Differentiating gives

Ip 1 —1/2,-3/2 —(y—x)?/2t 12— (y—n)?y2e (Y — 2)?
E:_E(Qﬂ) /24=3/2—(y—2)"/ + (2nt) 2= (y—2)"/ 5
It _ (gupy1/2e=w=0)?/2, _W =)

Jy t

azpt - —(y—=x)? (y_x)Q — —(y—=z)? 1
3 = (2mt) " V2~ vma) /2 5 + (2mt) 2~ W )/Qt._E

SO

Opi/0t = (1/2)82pt8y2
To check the second claim note that
D prw,pultsy) = ults )2 pila ) + pila, ) rult, )
ot b T, y)ult,y)) = ult,y atpt z,Y pe x,y 8tu Y

1 92 0
= U(hy)ia—yth(%y) + pe(z, y)a“(fa Y)

Integrating by parts twice in the first term results in

1 92 0
/pt(iv,y) (5 a—yw(t,y) + gway)) dy =0

5.6. If we let u(t,z) = 25 — atz* + bt22? — ct® then

0
v_ 62° — datz® + 20tz

oz
% = 302" — 12atz” + 2bt
% = —ax® + 2bta® — 3ct?
To have Ou/dt = —30%u/0x* we need
—a+15=0 2b—6a=0 —3c+b=0
ie, a=15,b=45, ¢=15. Using (5.1) we have
E (B —15(T At) B, + 45(T At)?BFay) = 15E(T A t)°

From (5.5) and (5.9) we know ET = a? and ET? = 5a*/3 < oco. Using
the dominated convergence theorem on the left and the monotone convergence
theorem on the right, we have

a’ <1 - 15+45g> = 15ET"
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so ET3 = 61/15.

5.7. u(t,x) = (1 4+ )72 exp(x? /(1 + 1)) = (27)/2p11+(0,4z) where i = /—1
so Ou /0t + (1/2)9%u/0x? = 0 and Exercise 5.5 implies u(t, B;) is a martingale.
Being a nonnegative martingale it must converge to a finite limit a.s. However,
if we let oy = By/((1 4 t)log(1 + t))'/? then

(14+6)"Y2exp(B?/(1+1)) = (1 4+ t)" Y2 exp(a? log(1 + 1))

so we cannot have zZ > 1/2 i.o.

7.6. Donsker’s Theorem

6.1. Exercise 5.4 implies ET., < C [ x* 1, ,(dz) so using a computation after
(6.2)

E(Tgy) < CE/$4 puy (de) = CEX*
6.2. p(w) = maxg<s<1 w(s) — ming<s<1 w(s) is continuous so (*) implies
1

— | max S,, — min S,, | = max B, — min B
\/ﬁ 0<m<n 0<m<n 0<s<1 0<s<1

6.3. (i) Clearly (1/n)>." _, B(m/n)— B((m —1)/n) has a normal distribution.

m=1
The sums converges a.s. and hence in distribuiton to fol B; dt, so by Exercise
3.9 the integral has a normal distribution. To compute the variance, we write

s([ n dtf e ([ [ )
=2 </01 /:E(BSBt)dtds)
:2/01/Slsdtds
—2/015(1—s)ds—2 <§—%>

(ii) Let Xy = (n+1—m)X,,/n%? EX, ,m, =0 and

Zn: EX?, =n"? zn:f —1/3
m=1 k=1

w

0 3
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To check (ii) in (4.5) in Chapter 2 now, we observe that if 1 <m <n
2
B((n 200+ 1= m) X/ n2) s o2 4 1) X
1
<—F (XT;1X1| > ev/n)

so the sum in (ii) is < BF(X{;|X1| > ey/n) — 0 by dominated convergence.
7.7. CLT’s for Dependent Variables
7.1. On {{, = i} we have

E(X2,,1,) = / 2? dH(z) = o?

The ergodic theorem for Markov chains, Example 2.2 in Chapter 6 (or Exercise

5.2 in Chapter 5) implies that

nt Z o*(Xom) — 202@)77(:17) a.s.

7.2. Let p = P(n, = 1) and let X,, = n, — 1/4. Since X,, is 1-dependent, the
formula in Example 7.1 implies 02 = EXZ + 2E(XoX1). EXZ = var(n) =

(1/4)(3/4) since 1o is Bernoulli(1/4). For the other term we note
EXoX1=El[no —1/4)(m —1/4)] = —1/16

since EZyZ; = 0 and EZ; = 1/4. Combining things we have o2 = 2/16.

To identify Yy we use the formula from the proof and the fact that X; is

independent of F_1, to conclude

Yo = Xo — BE(Xo|F-1) + E(X1]|F0) — EX3

1 1
= Lgo=me=1) = 5l=m + 5l@=n) — 1/4

7.3. The Markov property implies

E(XolF-0) =Y 0" (s i)y
J



Section 7.9 Laws of the Iterated Logarithm

Since Markov chain is irreducible with a finite state space, combining Exercise
5.10 with fact that ), 7(¢)u; = 0 shows there are constants 0 < v,C < 0o so
that

sup (> p" (i, j)ps| < Cem ™
K2 .
J

7.8. Empirical Distributions, Brownian Bridge

8.1. Exercise 4.1 implies that

P(max Bt>b,—6<Bl<6> =P(2b—e< By <2b+e¢)
0<t<1

Since P(|B1| < €) ~ 2¢- (2m)~1/2 it follows that

P ( max By > b‘ —e< B < 6) —>e_(2b2)/2
0<t<1

7.9. Laws of the Iterated Logarithm

9.1. Letting f(t) = 2(1 + €)logloglogt and using a familar formula from the
proof of (9.1)

Po(Biy, > (taf (tk)'/?) ~ £f (tr)/? exp(—(1 + €) log k)
The right-hand side is summable so

lim sup By, / (2t 1oglog10gtk)1/2 <1

k—o0

For a bound in the other direction take g(t) = 2(1 —¢€) logloglogt and note that
Po(By, = B,y > ((tr = tim1)g(te))V?) ~ kg(t) /% exp(~(1 — €) log k)

The sum of the right-hand side is co and the events on the left are independent
SO

Py (Btk — B, > ((tk — tk—l)g(tk))1/2 i.O.) =1

Combining this with the result for the limsup and noting tx_1/tx — 0 the
desired result follows easily.
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9.2. E|X;|* = oo implies S, P(|X;| > Cn'/®) = oo for any C. Using

the second Borel-Cantelli now we see that limsup,, . |X,|/n'/® > C, i.e., the
limsup = oco. Since max{|Sy,|, [Sn_1|} > |Xy|/2 it follows that limsup,, . S,/n'/* =}}
0.

9.3. (9.1) implies that

limsup S, /(2nloglogn)t/? =1  liminf S, /(2nloglogn)'/? = —1

n—oo

so the limit set is contained in [—1,1]. On the other hand

iP(Xn > ey/n) < 0o

m=1

for any € so X,,/v/n — 0. This shows that the differences (Sp4+1 — Sn)/v/n — 0
so as Sy, /(2nloglogn)'/? wanders back and forth between 1 and —1 it fills up
the entire interval.



Appendix: Measure Theory

A.1. Lebesgue-Stieltjes Measures

1.1. (i) If A, B € U;F; then A, B € F,, for some n, so A°, AUB € F,.
(ii) Let @ =[0,1), F, = o({[m/2™, (m +1)/2™),0 < m < 2"}. o(U;F;) = the
Borel subsets of [0,1) but [0,1/3) & U;F;.

1.2. If A has asymptotic density 6 then A° has asymptotic density 1 — 6. How-
ever, A is not closed under unions. To prove this note that if A has the property
that [{2k— 1,2k} N A| = 1 for all integers k then A has asymptotic density 1/2.
Let A consist of the odd integers between (2k — 1)! and (2k)! and the even
integers between (2k)! and (2k + 1)!. Let B = 2Z. Then

limsup [(AUB)N{1,2,...n}/n=1

n—oo

liminf (AU B)N{1,2,...n}/n=1/2

1.3. (1) B=A+ (B—A) so u(B) = u(A)+ u(B—A) > u(A).
(ii) Let A!, = A, N A, By = A} and for n > 1, B,, = A}, — U"_}(A/ ). Since
the B,, are disjoint and have union A we have using (i) and B,, C A,

pA) =" p(Bm) <Y p(Am)
m=1 m=1
(iii) Let B, = A, — Ap—1. Then the B, are disjoint and have UX_, B,, = A,
U —1Bm = Ay so

n

p(A) = pu(Bm)= lim Y p(Bn) = lim p(Ay)
m=1 m=1
(iv) Ay — A, T A1 —Aso (iii) implies (A1 —A,,) T (A1 —A). Since pu(A;—B) =
1(Ar) — u(B) it follows that u(Ay) | p(A).
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1.4. uw(Z) = 1 but p({n}) =0 for all n and Z = U,{n} so u is not countably
additive on o(A).

1.5. By fixing the sets in coordinates 2, ..., d it is easy to see 0(R%) D R x R, X
R, and iterating gives the desired result.

A.2. Carathéodary’s Extension Theorem

2.1. Let C = {{1,2},{2,3}}. Let i be counting measure. Let v(A) =2if 2 € A,
0 otherwise.

A.3. Completion, etc

3.1. By (3.1) there are A; € A so that U;A; D B and Y, u(A;) < u(B) +€/2.
Pick I so that >, ; u(A;) < €/2, and let A = Uj<sA;. Since B C U;A;, we
have B — A C U;~1A; and hence u(B — A) < p(U;s14;) < €/2. To bound
the other difference we note that A — B C (U;A;) — B and U;A; D B so
(A = B) < u(U;A;) — u(B) < €/2.

3.2. (i) For each rational r, let E, = r +' D,. The E, are disjoint subsets of
(0,1], s0 >°, u(Er) < 1 but we have u(E,) = p(Dy), so p(Dg) = 0.

(ii) By translating A we can suppose without loss of generality that pu(A N
(0,1]) > 0. For each rational ¢ let A, = AN By. If every A, is measurable then
1(Ag) =0 by (i) and u(AN(0,1]) = >, u(Ag) = 0 a contradicition.

3.3. Write the rotated rectangle B as {(z,y) : a < x < b, f(z) <y < g(x)}
where f and g are piecewise linear. Subdividing [a, b] into n equal pieces, using
the upper Riemann sum for g and the lower Riemann sum for f, then letting
n — oo we conclude that A*(B) = A(A).

(ii) By covering D with the appropriate rotations and translations of sets used
to cover C, we conclude A*(D) < A\*(C). Interchanging the roles of C and D
proves that equality holds.

A.4. Integration

4.1. Let As = {z : f(z) > 6} and note that As T Ag as d | 0. If u(Ag) > 0 then
1(As) > 0 for some & > 0. If pu(As) > 0 then p(As N [—m,m]) > 0 for some m.
Letting h(z) = § on As N [—m,m] and 0 otherwise we have

/fduz/hd,uzéu(Agﬂ[—m,m])>O



A.4 Integration

a contradiction.

4.2. Let g=3>° | ®1p, . Since g < f, (iv) in (4.5) implies

m=1 2n

m=1
lim sup Z gﬂ(En,m) < /fdﬂ

For the other inequality let h be the class used to define the integral. That is,
0<h<f, hisbounded, and H = {z : h(z) > 0} has u(H) < .

1
g+2—anZf1H2h

so using (iv) in (4.5) again we have

1 = m
- — >
o)+ Y S (B 2 [

Letting n — 0o now gives

timint S 22 (B ) > / hdu
m=1

Since h is an aribitrary member of the defining class the desired result follows.

4.3. Since
/Ig—(w—w)lduﬁ/lg+—sﬁldu+/Ig_—dfldu

it suffices to prove the result when g > 0. Using Exercise 4.2, we can pick
n large enough so that if E, ,, = {z : m/2" < f(z) < (m + 1)/2"} and
h(z)=> 0", (m/2")1g, . then [g—hdu < €/2. Since

> ForlBun) = [hau< [gdn <o
n=1

we can pick M so that s pu(Enm) < €/2. If we let
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then [|g—@ldu= [g—hdu+ [h—pdu<e.

(i) Pick A, that are finite unions of open intervals so that |4, AE,, ,,| < eM 2

and let
M

m
= e 1
q(z) om LAm

m=1

Now the sum above is = Z?:l ¢il(a;_,,a;) @lmost everywhere (i.e., except at
the end points of the intervals) for some ap < a1 < --- < ay and ¢; € R.

M
/Isﬁ—qldug >
m=1

(iii) To make the continuous function replace each c;1(4,_, q,) by a function r;
that is 0 on (aj_1,a;)¢, ¢; on [aj_1 + 0;,a; — d;], and linear otherwise. If we

let r(x) = 2521 rj(x) then

k
[lata) = ria) = 6ic; <
j=1

|3

,U(Am AEjn,m) <

€
n o

[\

if we take d;¢; < €/k.

4.4. Suppose g(r) = cl(qp) (). In this case

b c . b
g(x)cosnxdr =c [ cosnxdr= —sinnz
a

n a

so the absolute value of the integral is smaller than 2|c|/n and hence — 0.
Linearity extends the last result to step functions. Using Exercise 4.3 we can
approximate g by a step function ¢ so that [|g — ¢|dz < e. Since |cosnz| <1
the triangle inequality implies

}/g(x) cosnzx dx —|—/|g(3:)—q(:1:)|dx

< } / q(z) cos nz da

so the limsup of the left hand side < € and since € is arbitrary the proof is
complete.

4.5. (a) does not imply (b): let f(x) = 1p,1. This function is continuous at
x # 0 and 1 but if ¢ = f a.e. then g will be discontinuous at 0 and 1.

(b) does not imply (a): f = 1lq where Q = the rationals is equal a.e. to the
continuous function that is = 0. However 1q is not continuous anywhere.



A.5 Properties of the Integral

4.6.Let EI' ={w: 2l _; < f(z) <2}, ¥, = 2a,_; on E' and ¢, =z, on
E". ¢, < f <@, <9 +mesh(oy,) so (iv) in (4.7) implies

/Q/Jndﬂﬁ /fdu < /sondu < /wndu—i-mesh(an)u(Q)

It follows from the last inequality that if we have a sequence of partitions with
mesh(o,) — 0 then

U(on) :/% dp, L(on) :/sﬁn dp, —>/fdu

A.5. Properties of the Integral
5.1.If |g| < M a.e. then |fg| < M|f| a.e. and (iv) in (4.7) implies

[1saldn <5 [11a= 21111

Taking the inf over M now gives the desired result.

5.2. If p({x : |f(z)| > M}) =0 then [|f[Pdu < MP so limsup, . || fll, < M.
On the other hand if p({z : |f(z)] > N}) =& > 0 then [|f|Pdu > INP so
liminf, o || f]lp > N. Taking the inf over M and sup over N gives the desired
result.

5.3. Since |f + g| < |f] + |g| we have

/|f+g|pdx§ /|f||f+g|P*1dx+/|g||f+g|p*1dx
<AL+ 9Pl + lglloll 1 + a7~

Now ¢ =p/(p—1) so

1/q
11F + gl = ( / |f+g|”dw) I+ gl

and dividing each side of the first display by ||f +g[|[?~" gives the desired result.
(ii) Since |f + g| < |f] + |gl, (iv) and (iii) of (4.7) imply that

[1s+gldz< [1f1+lgldo< [171do+ [ 1g]as
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It is easy to see that if p{z : |f(z)| > M} =0 and p{z : |g(z)| > N} =0 then
w{x : |f(z) + g(x)] > M + N} = 0. Taking the inf over M and N we have

1+ glloo < 1 flloc + llglloo

5.4. If o, is a sequence of partitions with mesh(c,) — 0 then fo~(z) — f(x)
at all points of continuity of f so the bounded convergence theorem implies

Ulon) = fo(x)de — f(z)dx
[a,b] [a,b]

A similar argument to applies to the lower Riemann sum and completes the
proof.

5.5.1f0 < (gn+9g7 ) T (g+9g7 ) then the monotone convergence theorem implies

/gn—gfduT/g—gfdu

Since [ g7 dp < oo we can add [ g; du to both sides and use (ii) of (4.5) to get
the desired result.

5.6. % 0 _oGm 1 Yop_o gm SO the monotone convergence theorem implies

/ngdu:nlggo/ > gmdp
m=0 m=0
ZHILH;OZ/gmd/L: Z/gmdu
m=0 m=0

5.7. (i) follows from the monotone convergence theorem.
(ii) Let f = |g| and pick n so that

€
/Igldu—/lglAndu<§

Then let § < €/(2n). Now if u(A) < ¢

€
/Agduﬁ/Igl—(lglAn)du+[4lg|Andu<5+M(A)n<6

58.3." o flg,, — flg and is dominated by the integrable function | f|, so the
dominated convergence theorem implies

fdp = lim / fdu



A.6  Product Measure, Fubini’s Theorem

5.9. If 2, — ¢ € (a,b) then fl,, 1 — flis,q a.e. and is dominated by |f| so
the dominated convergence theorem implies g(x,) — g(c).

5.10. First suppose f > 0. Let ¢, (z) =m/2" on {z : m/2" < f(x) < (m+1) <
2"} for 1 < m < n2" and 0 otherwise. As n 1 oo, gn(x) T f(z) so so the
dominated convergence theorem implies f |f — @nl? du — 0. To extend to the
general case now, let ¢ approximate f¥, let ¢ approximate f~, and let
¢ = T — ¢~ and note that

J1e=dlan= [ 1= etldn+ [157 - ol an

5.11. Exercise 5.6 implies [ > |fo|dp =3, [|faldp < 00 s0 > |fr] < o0 ace.,

n

gnZme—WI:me a.e.
m=1

m=1

and the dominated convergence theorem implies [ g, du — [ gdu. To finish
the proof now we notice that (iv) of (4.7) implies

/gndu—mil/fmdu

and we have Y | [ frdp| < S0 [ | fm] dp < 00 s0

i:l/fmdu—*i:l/fmdu

A.6. Product Measure, Fubini’s Theorem

6.1. The first step is to observe A x B, C (A, X B,) so a(A, x B,) = A x B.
Since A, x B, is closed under intersection, uniqueness follows from (2.2).

6.2. |f]| > 0so

/ (s x ) = /X /Y (@) pa(dy) s () < o0

This shows f is integrable and the result follows from (6.2).
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6.3. Let Y = [0,00), B = the Borel subsets, and A = Lebesgue measure. Let
F(@,y) = 1{(2,y):0<y<g(z)}, and observe

/fauxM:wuxMu@wwo<y<gu»>

/X/Yf(x,y)dyu(dx):/Xg(x)u(dx)
/}//){f(x,y)u(dx)dyz/(Jmu(g(w)>y)dy

6.4. (i) Let f(z,y) = 1(aq<z<y<p) and observe

(x){@y)sa<z <y<sh = [ fduxo)
—//fwmu-(ﬁﬂw—ﬂmwmw

(ii) Using (i) twice we have

( b]{F(y)—F(a)}dG(y)Jr : b]{G(y)—G(a)}dF(y)

= F(a){G(b) — G(a)} + G@){F(b) - F(a)}
+ (uxv)((a,b] x (a,0]) + (u x v)({(2,2) : 0 <2 < b})
The third term is (F'(b) — F(a))(G(b) — G(a)) so the sum of the first three is

Fb)G(b) — F(a)G(a).
(iii) If F = G is continuous then the last term vanishes.

6.5. Let f(2,y) = 1{(zy)w<y<ate}-
[ [ t@wutn iz = [ Faso - Fayds
//f(:v,y) dz p(dy) = C/N(dy) = cu(R)

so the desired result follows from (6.2).

6.6. We begin by observing that

a oo a .
e sinz|dydr = Mdz<oo
Y
o Jo 0 x
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since sin z /2 is bounded on [0, a]. So Exercise 6.2 implies e~*¥ sin z is integrable
in the strip. Removing the absolute values from the last computation gives the
left hand side of the desired formula. To get the right hand side integrate by
parts twice:

f(x)
a
/ e sinxdr =—e ¥Ycosa+1— / ye Y cosx dx
0 0

e™  fl(x) =—ye ™ ¢'(z)=sinz g(z) =—cosx

Rl

f(@)=—ye™™ flz)=y*e™ ¢ (v)=cosz g(r)=sinz

a a
— / ye Y cosxdr = —ye” Ysina — / y?e ™ sinx dx
0 0

Rearranging gives

a
1
e sinedx = 1—e *¥cosa—ye “Ysina
/0 1+ yz( Y )

Integrating and recalling dtan~!(y)/dy = 1/(1 + y?) gives the displayed equa-
tion. To get the bound note [;° e~ dy =1/a and [~ ye=*¥ dy = 1/a’.

A.8. Radon-Nikodym Theorem
81 If u({An{zx: f(x) <0}) =0 then for BC A

[ rau= | fdu>0
B Bn{z:f(x)>0}

If E=An{z: f(x) < —€} has positive measure for some € > 0 then
/fdug/ —edpu <0
E E

8.2. Let u be the uniform distribution on the Cantor set, C, defined in Example
1.7 of Chapter 1. u(C°¢) =0 and A(C) = 0 so the two measures are mutually
singular.

8.3. If F C E then since (AU B)° is a null set.

so A is not positive.

a(F)=a(FNA)+a(FNB)<a(ENA) =ay(E)
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8.4. Suppose v} + vl and 12 + v? are two decompositions. Let A; be so that
vi(A;) = 0 and p(AS) = 0. Clearly pu(A§ U A§) = 0. The fact that v} < p
implies v%(A§ U AS) = 0. Combining this with v} (A1) =0 = v2(As) it follows
that
I/%(E) = V&(EﬂAl ﬂAQ) = /L(EﬂAl ﬂAQ)

= Vf(EﬂAl ﬂAQ) = I/?(E)

2

This shows v! = 12 and it follows that v} = 2.

T

8.5. Since p2 L v, there is an A with ps(A) = 0 and v(A°) = 0. g1 << g
implies p1(A) =0so py L v.

8.6. Let g; = dv;/dp. The definition implies v;(B) = fB gi du so

(1 + 1) (B) = /B (91 + g2) ds

and the desired result follows from uniqueness.

8.7. If FF = 14 this follows from the definition. Linearity gives the result for
simple functions; monotone convergence the result for nonnegative functions.

8.8. Let f = (dn/dv)1p in Exercise 8.7 to get

dr d d
_ﬁ._Vdu:/ 9T = x(B)
pdv du B dp
where the second equality follows from a second application of Exercise 8.7.

8.9. Letting m = p in Exercise 8.8 we have

| du v
Cdv dp





