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1 Laws of Large Numbers

1.1. Basic Definitions

1.1. (i) A andB−A are disjoint with B = A∪(B−A) so P (A)+P (B−A) = P (B)
and rearranging gives the desired result.
(ii) Let A′

n = An ∩ A, B1 = A′
1 and for n > 1, Bn = A′

n − ∪n−1
m=1A

′
m. Since the

Bn are disjoint and have union A we have using (i) and Bm ⊂ Am

P (A) =
∞∑

m=1

P (Bm) ≤
∞∑

m=1

P (Am)

(iii) Let Bn = An − An−1. Then the Bn are disjoint and have ∪∞
m=1Bm = A,

∪n
m=1Bm = An so

P (A) =
∞∑

m=1

P (Bm) = lim
n→∞

n∑

m=1

P (Bm) = lim
n→∞

P (An)

(iv) Ac
n ↑ Ac so (iii) implies P (Ac

n) ↑ P (Ac). Since P (Bc) = 1−P (B) it follows
that P (An) ↓ P (A).

1.2. (i) Suppose A ∈ Fi for all i. Then since each Fi is a σ-field, Ac ∈ Fi for
each i. Suppose A1, A2, . . . is a countable sequence of disjoint sets that are in
Fi for all i. Then since each Fi is a σ-field, A = ∪mAm ∈ Fi for each i.
(ii) We take the interesection of all the σ-fields containing A. The collection of
all subsets of Ω is a σ-field so the collection is not empty.

1.3. It suffices to show that if F is the σ-field generated by (a1, b1)×· · ·×(an, bn),
then F contains (i) the open sets and (ii) all sets of the form A1 ×· · ·An where
Ai ∈ R. For (i) note that if G is open and x ∈ G then there is a set of the
form (a1, b1) × · · · × (an, bn) with ai, bi ∈ Q that contains x and lies in G, so
any open set is a countable union of our basic sets. For (ii) fix A2, . . . , An and
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let G = {A : A×A2 × · · · ×An ∈ F}. Since F is a σ-field it is easy to see that
if Ω ∈ G then G is a σ-field so if G ⊃ A then G ⊃ σ(A). From the last result it
follows that if A1 ∈ R, A1 × (a2, b2) × · · · × (an, bn) ∈ F . Repeating the last
argument n− 1 more times proves (ii).

1.4. It is clear that if A ∈ F then Ac ∈ F . Now let Ai be a countable collection
of sets. If Ac

i is countable for some i then (∪iAi)c is countable. On the other
hand if Ai is countable for each i then ∪iAi is countable. To check additivity
of P now, suppose the Ai are disjoint. If Ac

i is countable for some i then Aj is
countable for all j 6= i so

∑
k P (Ak) = 1 = P (∪kAk). On the other hand if Ai

is countable for each i then ∪iAi is and
∑

k P (Ak) = 0 = P (∪kAk).

1.5. The sets of the form (a1, b1)× · · · × (ad, bd) where ai, bi ∈ Q is a countable
collection that generates Rd.

1.6. If B ∈ R then {Z ∈ B} = ({X ∈ B} ∩ A) ∪ ({Y ∈ B} ∩ Ac) ∈ F

1.7.
P (χ ≥ 4) ≤ (2π)−1/24−1e−8 = 3.3345× 10−5

The lower bound is 15/16’s of the upper bound, i.e., 3.126× 10−5

1.8. The intervals (F (x−), F (x)), x ∈ R are disjoint and each one that is
nonempty contains a rational number.

1.9. Let F̂−1(x) = sup{y : F (y) ≤ x} and note that F (F̂−1(x)) = x when F is
continuous. This inverse wears a hat since it is different from the one defined
in the proof of (1.2). To prove the result now note that

P (F (X) ≤ x) = P (X ≤ F̂−1(x)) = F (F̂−1(x)) = x

1.10. If y ∈ (g(α), g(β)) then P (g(X) ≤ y) = P (X ≤ g−1(y)) = F (g−1(y)).
Differentiating with respect to y gives the desired result.

1.11. If g(x) = ex then g−1(x) = logx and g′(g−1(x)) = x so using the formula
in the previous exercise gives (2π)−1/2e−(log x)2/2/x.

1.12. (i) Let F (x) = P (X ≤ x). P (X2 ≤ y) = F (
√
y) − F (−√

y) for y > 0.
Differentiating we see that X2 has density function

(f(
√
y) + f(−√

y))/2
√
y

(ii) In the case of the normal this reduces to (2πy)−1/2e−y/2.
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1.2. Random Variables

2.1. Let G be the smallest σ-field containing X−1(A). Since σ(X) is a σ-field
containing X−1(A), we must have G ⊂ σ(X) and hence G = {{X ∈ B} : B ∈
F} for some S ⊃ F ⊃ A. However, if G is a σ-field then we can assume F is.
Since A generates S, it follows that F = S.

2.2. If {X1 +X2 < x} then there are rational numbers ri with r1 + r2 < x and
Xi < ri so

{X1 +X2 < x} = ∪r1,r2∈Q:r1+r2<x{X1 < r1} ∩ {X2 < r2} ∈ F

2.3. Let Ω0 = {ω : Xn(ω) → X(ω)}. If ω ∈ Ω0 it follows from the definition
of continuity that f(Xn(ω)) → f(X(ω)). Since P (Ω0) = 1 the desired result
follows.

2.4. (i) If G is an open set then f−1(G) is open and hence measurable. Now
use A = the collection of open sets in (2.1).
(ii) Let G be an open set and let f(x) be the distance from x to the complement
of G, i.e., inf{|x − y| : y ∈ Gc}. f is continuous and {f > 0} = G, so we need
all the open sets to make all the continuous functions measurable.

2.5. If f is l.s.c. and xn is a sequence of points that converge to x and have
f(xn) ≤ a then f(x) ≤ a, i.e., {x : f(x) ≤ a} is closed. To argue the converse
note that if {y : f(y) > a} is open for each a ∈ R and f(x) > a then it is impos-
sible to have a sequence of points xn → x with f(xn) ≤ a so lim infy→x f(y) ≥ a
and since a < f(x) is arbitrary, f is l.s.c.
The measurability of l.s.c. functions now follows from Example 2.1. For the
other type note that if f is u.s.c. then −f is measurable since it is l.s.c., so
f = −(−f) is.

2.6. In view of the previous exercise we can show fδ is l.s.c. by showing {x :
fδ(x) > a} is open for each a ∈ R. To do this we note that if fδ(x) > a then
there is an ε > 0 and a z with |z − x| < δ − ε so that f(z) > a but then if
|y−x| < ε we have fδ(y) > a. A similar argument shows that {x : fδ(x) < a} is
open for each a ∈ R so fδ is u.s.c. The measurability of f0 and f0 now follows
from (2.5). The measurability of {f0 = f0} follows from the fact that f0 − f0
is.

2.7. Clearly the class of F measurable functions contains the simple functions
and by (2.5) is closed under pointwise limits. To complete the proof now it
suffices to observe that any f ∈ F is the pointwise limit of the simple functions
fn = −n ∨ ([2nf ]/2n) ∧ n.
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2.8. Clearly the collection of functions of the form f(X) contains the simple
functions measurable with respect to σ(X). To show that it is closed under
pointwise limits suppose fn(X) → Z, and let f(x) = lim supn fn(x). Since
f(X) = lim supn fn(X) it follows that Z = f(X). Since any f(X) is the
pointwise limit of simple functions, the desired result follows from the previous
exercise.

2.9. Note that for fixed n the Bm,n form a partition of R and Bm,n = B2m,n+1∪
B2m+1,n+1. If we write fn(x) out in binary then as n→ ∞ we get more digits
in the expansion but don’t change any of the old ones so limn fn(x) = f(x)
exists. Since |fn(X(ω)) − Y (ω)| ≤ 2−n and fn(X(ω)) → f(X(ω)) for all ω,
Y = f(X).

1.3. Expected Value

3.1. X − Y ≥ 0 so E|X − Y | = E(X − Y ) = EX − EY = 0 and using (3.4) it
follows that P (|X − Y | ≥ ε) = 0 for all ε > 0.

3.2. (3.1c) is trivial if EX = ∞ orEY = −∞. When EX+ <∞ andEY − <∞,
we have E|X |, E|Y | <∞ since EX− ≤ EY − and EX+ ≥ EY +.

To prove (3.1a) we can without loss of generality suppose EX−, EY − < ∞
and also that EX+ = ∞ (for if E|X |, E|Y | < ∞ the result follows from the
theorem). In this case, E(X + Y )− ≤ EX− + EY − < ∞ and E(X + Y )+ ≥
EX+ −EY − = ∞ so E(X + Y ) = ∞ = EX +EY .

To prove (3.1b) we note that it is easy to see that if a 6= 0 E(aX) = aEX . To
complete the proof now it suffices to show that if EY = ∞ then E(Y + b) = ∞,
which is obvious if b ≥ 0 and easy to prove by contradiction if b < 0.

3.3. Recall the proof of (5.2) in the Appendix. We let `(x) ≤ ϕ(x) be a linear
function with `(EX) = ϕ(EX) and note that Eϕ(X) ≥ E`(X) = `(EX). If
equality holds then Exercise 3.1 implies that ϕ(X) = `(X) a.s. When ϕ is
strictly convex we have ϕ(x) > `(x) for x 6= EX so we must have X = EX a.s.

3.4. There is a linear function

ψ(x) = ϕ(EX1, . . . , EXn) +
n∑

i=1

ai(xi −EXi)

so that ϕ(x) ≥ ψ(x) for all x. Taking expected values now and using (3.1c)
now gives the desired result.

3.5. (i) Let P (X = a) = P (X = −a) = b2/2a2, P (X = 0) = 1 − (b2/a2).
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(ii) As a → ∞ we have a21(|X|≥a) → 0 a.s. Since all these random variables
are smaller than X2, the desired result follows from the dominated convergence
theorem.

3.6. (i) First note that EY = EX and var(Y ) = var(X) implies that EY 2 =
EX2 and since ϕ(x) = (x+ b)2 is a quadratic that Eϕ(Y ) = Eϕ(X). Applying
(3.4) we have

P (Y ≥ a) ≤ Eϕ(Y )/(a+ b)2 = Eϕ(X)/(a+ b)2 = p

(ii) By (i) we want to find p, b > 0 so that ap−b(1−p) = 0 and a2p+b2(1−p) =
σ2. Looking at the answer we can guess p = σ2/(σ2 + a2), pick b = σ2/a so
that EX = 0 and then check that EX2 = σ2.

3.7. (i) Let P (X = n) = P (X = −n) = 1/2n2, P (X = 0) = 1− 1/n2 for n ≥ 1.
(ii) Let P (X = 1 − ε) = 1 − 1/n and P (X = 1 + b) = 1/n for n ≥ 2. To have
EX = 1, var(X) = σ2 we need

−ε(1− 1/n) + b(1/n) = 0 ε2(1 − 1/n) + b2(1/n) = σ2

The first equation implies ε = b/(n− 1). Using this in the second we get

σ2 = b2
1

n(n− 1)
+ b2

1
n

=
b2

n− 1

3.8. Cauchy-Schwarz implies
(
EY 1(Y >a)

)2 ≤ EY 2P (Y > a)

The left hand side is larger than (EY − a)2 so rearranging gives the desired
result.

3.9. EX2/α
n = n2(1/n− 1/(n+ 1)) = n/(n+ 1) ≤ 1. If Y ≥ Xn for all n then

Y ≥ nα on (1/(n + 1), 1/n) but then EY ≥
∑∞

n=1 n
α−1/(n + 1) = ∞ since

α > 1.

3.10. If g = 1A this follows from the definition. Linearity of integration extends
the result to simple functions, and then monotone convergence gives the result
for nonnegative functions. Finally by taking positive and negative parts we get
the result for integrable functions.

3.11. To see that 1A = 1 −
∏n

i=1(1 − 1Ai) note that the product is zero if and
only if ω ∈ Ai some i. Expanding out the product gives

1 −
n∏

i=1

(1 − 1Ai) =
n∑

i=1

1Ai −
∑

i<j

1Ai1Aj · · · + (−1)n
n∏

j=1

1Aj
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3.12. The first inequality should be clear. To prove the second it suffices to
show

1A ≥
n∑

i=1

1Ai −
∑

i<j

1Ai1Aj

To do this we observe that if ω is in exactly m of the sets Ai then the right
hand side is m −

(
m
2

)
which is ≤ 1 for all m ≥ 1. For the third inequality it

suffices to show

1A ≤
n∑

i=1

1Ai −
∑

i<j

1Ai1Aj +
∑

i<j<k

1Ai1Aj1Ak

This time if ω is in exactly m of the sets Ai then the right hand side is

m−
m(m− 1)

2
+
m(m− 1)(m− 2)

6

We want to show this to be ≥ 1 when m ≥ 1. When m ≥ 5 the third term is
≥ the second and this is true. Computing the value when m = 1, 2, 3, 4 gives
1, 1, 1, 2 and completes the proof.

3.13. If 0 < j < k then |x|j ≤ 1 + |x|k so E|X |k < ∞ implies E|X |j < ∞. To
prove the inequality note that ϕ(x) = |x|k/j is convex and apply (3.2) to |X |j .

3.14. Jensen’s inequality implies ϕ(EX) ≤ Eϕ(X) so the desired result follows
by noting Eϕ(X) =

∑n
m=1 p(m)ym and

ϕ(EX) = exp

(
n∑

m=1

p(m) log ym

)
=

n∏

m=1

y p(m)
m

3.15. Let Yn = Xn + X−
1 . Then Yn ≥ 0 and Yn ↑ X + X−

1 so the monotone
convergence theorem implies E(Xn + X−

1 ) ↑ E(X + X−
1 ). Using (3.1a) now

it follows that EXn + EX−
1 ↑ EX + EX−

1 . The assumption that EX−
1 < ∞

allows us to subtract EX−
1 and get the desired result.

3.16. (y/X)1(X>y) ≤ 1 and converges to 0 a.s. as y → ∞ so the first result
follows from the bounded convergence theorem. To prove the second result, we
use our first observation to see that if 0 < y < ε

E(y/X ;X > y) ≤ P (0 < X < ε) +E(y/X ;X ≥ ε)

On {X ≥ ε}, y/X ≤ y/ε ≤ 1 and y/X → 0 so the bounded convergence
theorem implies

lim sup
y→0

E(y/X ;X > y) ≤ P (0 < X < ε)
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and the desired result follows since ε is arbitrary.

3.17. Let YN =
∑N

n=0Xn. Using the monotone convergence theorem, the lin-
earity of expectation, and the definition of the infinite sum of a sequence of
nonnegative numbers

E

( ∞∑

n=0

Xn

)
= E lim

N→∞
YN = lim

N→∞
EYN

= lim
N→∞

N∑

n=0

EXn =
∞∑

n=0

EXn

3.18. Let Yn = |X |1An . Jensen’s inequality and the previous exercise imply

∞∑

n=0

|E(X ;An)| ≤
∞∑

n=0

EYn = E

∞∑

n=0

Yn ≤ E|X | <∞

Let Bn = ∪n
m=0Am, and Xn = X1Bn. As n → ∞, X1Bn → X1A and E|X | <

∞ so the dominated convergence theorem and the linearity of expectation imply

E(X ;A) = lim
n→∞

E(X ;Bn) = lim
n→∞

n∑

m=0

E(X ;Am)

1.4. Independence

4.1. (i) If A ∈ σ(X) then it follows from the definition of σ(X) that A = {X ∈
C} for some C ∈ R. Likewise if B ∈ σ(Y ) then B = {Y ∈ D} for some D ∈ R,
so using these facts and the independence of X and Y ,

P (A ∩B) = P (X ∈ C, Y ∈ D) = P (X ∈ C)P (Y ∈ D) = P (A)P (B)

(ii) Conversely if X ∈ F , Y ∈ G and C,D ∈ R it follows from the definition
of measurability that {X ∈ C} ∈ F , {Y ∈ D} ∈ G. Since F and G are
independent, it follows that P (X ∈ C, Y ∈ D) = P (X ∈ C)P (Y ∈ D).

4.2. (i) Subtracting P (A ∩ B) = P (A)P (B) from P (B) = P (B) shows P (Ac ∩
B) = P (Ac)P (B). The second and third conclusions follow by applying the
first one to the pairs of independent events (B,A) and (A,Bc).
(ii) If C,D ∈ R then {1A ∈ C} ∈ {∅, A,Ac,Ω} and {1B ∈ D} ∈ {∅, B,Bc,Ω},
so there are 16 things to check. When either set involved is ∅ or Ω the equality
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holds, so there are only four cases to worry about and they are all covered by
(i).

4.3. (i) Let B1 = Ac
1 and Bi = Ai for i > 1. If I ⊂ {1, . . . , n} does not contain 1

it is clear that P (∩i∈IBi) =
∏

i∈I P (Bi). Suppose now that 1 ∈ I and let J =
I − {1}. Subtracting P (∩i∈IAi) =

∏
i∈I P (Ai) from P (∩i∈JAi) =

∏
i∈J P (Ai)

gives P (Ac
1 ∩ ∩i∈JAi) = P (Ac

1)
∏

i∈J P (Ai).
(ii) Iterating (i) we see that if Bi ∈ {Ai, A

c
i} then B1, . . . , Bn are independent.

Thus if Ci ∈ {Ai, A
c
i ,Ω} P (∩n

i=1Ci) =
∏n

i=1 P (Ci). The last equality holds
trivially if some Ci = ∅, so noting 1Ai ∈ {∅, Ai, A

c
i ,Ω} the desired result follows.

4.4. Let cm =
∫
g(xm) dxm. If some cm = 0 then gm = 0 and hence f = 0 a.e., a

contradiction. Integrating over the whole space we have 1 =
∏n

m=1 cm so each
cm <∞. Let fm(x) = gm(x)/cm and Fm(y) =

∫ y

−∞ fm(x) dx for −∞ < x ≤ ∞.
Integrating over {x : xm ≤ ym, 1 ≤ m ≤ n} we have

P (Xm ≤ ym, 1 ≤ m ≤ n) =
n∏

m=1

Fm(ym)

Taking yk = ∞ for k 6= m, it follows that Fm(ym) = P (Xm ≤ ym) and we have
checked (4.3).

4.5. The first step is to prove the stronger condition: if I ⊂ {1, . . . , n} then

P (Xi = xi, i ∈ I) =
∏

i∈I

P (Xi = xi)

To prove this, note that if |I | = n−1 this follows by summing over the possible
values for the missing index and then use induction. Since P (Xi ∈ Sc

i ) = 0, we
can check independence by showing that if Ai ⊂ Si then

P (Xi ∈ Ai, 1 ≤ i ≤ n) =
n∏

i=1

P (Xi ∈ Ai)

To do this we let Ai consist of Ω and all the sets {Xi = x} with x ∈ Si. Clearly,
Ai is a π-system that contains Ω. Using (4.2) it follows that σ(A1), . . . , σ(An)
are independent. Since for any subset Bi of Si, {Xi ∈ Bi} is in σ(Ai) the
desired result follows.

4.6. EXn =
∫ 1

0
sin(2πnx) dx = −(2πn)−1 cos(2πnx)|10 = 0. Integrating by parts

twice

EXmXn =
∫ 1

0

sin(2πmx) sin(2πnx) dx

=
m

n

∫ 1

0

cos(2πmx) cos(2πnx) dx

=
m2

n2

∫ 1

0

sin(2πmx) sin(2πnx) dx
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so if m 6= n, EXmXn = 0. To see that Xm and Xn are not independent note
that Xm(x) = 0 when x = k/2m, 0 ≤ k < 2m and on this set Xn(x) takes
on the values Vn = {y0, y1, . . . y2m−1}. Let [a, b] ⊂ [−1, 1] − V with a < b.
Continuity of sin implies that if ε > 0 is sufficiently small, we have

P (Xm ∈ [0, ε], Xn ∈ [a, b]) = 0 < P (Xm ∈ [0, ε])P (Xn ∈ [a, b])

4.7. (i) Using (4.9) with z = 0 and then with z < 0 and letting z ↑ 0 and using
the bounded convergence theorem, we have

P (X + Y ≤ 0) =
∫
F (−y)dG(y)

P (X + Y < 0) =
∫
F (−y−)dG(y)

where F (−y−) is the left limit at −y. Subtracting the two expressions we have

P (X + Y = 0) =
∫
µ({−y})dG(y) =

∑

y

µ({−y})ν({y})

since the integrand is only positive for at most countably many y.
(ii) Applying the result in (i) with Y replaced by −Y and noting µ({x}) = 0
for all x gives the desired result.

4.8. The result is trivial for n = 1. If n > 1, let Y1 = X1 + · · · +Xn−1 which
is gamma(n− 1, λ) by induction, and let Y2 = Xn which is gamma(1, λ). Then
use Example 4.3.

4.9. Suppose Y1 = normal(0, a) and Y2 = normal(0, b). Then (4.10) implies

fY1+Y2(z) =
1

2π
√
ab

∫
e−x2/2ae−(z−x)2/2b dx

Dropping the constant in front, the integral can be rewritten as

∫
exp

(
−
bx2 + ax2 − 2axz + az2

2ab

)
dx

=
∫

exp
(
−a+ b

2ab

{
x2 − 2a

a+ b
xz +

a

a+ b
z2

})
dx

=
∫

exp

(
−a+ b

2ab

{(
x− a

a+ b
z

)2
+

ab

(a+ b)2
z2

})
dx
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since −{a/(a+ b)}2 + {a/(a+ b)} = ab/(a+ b)2. Factoring out the term that
does not depend on x, the last integral

= exp
(
− z2

2(a+ b)

)∫
exp

(
−a+ b

2ab

(
x− a

a+ b
z

)2)
dx

= exp
(
− z2

2(a+ b)

)√
2πab/(a+ b)

since the last integral is the normal density with parameters µ = az/(a + b)
and σ2 = ab/(a + b) without its proper normalizing constant. Reintroducing
the constant we dropped at the beginning,

fY1+Y2(z) =
1

2π
√
ab

√
2πab/(a+ b) exp

(
− z2

2(a+ b)

)

4.10. It is clear that h(ρ(x, y)) is symmetric and vanishes only when x = y. To
check the triangle inequality, we note that

h(ρ(x, y)) + h(ρ(y, z)) =
∫ ρ(x,y)

0

h′(u) du+
∫ ρ(y,z)

0

h′(u) du

≥
∫ ρ(x,y)+ρ(y,z)

0

h′(u) du

≥
∫ ρ(x,z)

0

h′(u) du = h(ρ(x, z))

the first inequality holding since h′ is decreasing, the second following from the
traingle inequality for ρ.

4.11. If C,D ∈ R then f−1(C), g−1(D) ∈ R so

P (f(X) ∈ C, g(Y ) ∈ D) = P (X ∈ f−1(C), Y ∈ g−1(D))

= P (X ∈ f−1(C))P (Y ∈ g−1(D))
= P (f(X) ∈ C)P (g(Y ) ∈ D)

4.12. The fact that K is prime implies that for any ` > 0

{`j mod K : 0 ≤ j < K} = {0, 1, . . .K − 1}

which implies that for anym ≥ 0 we have P (X+mY = i) = 1/K for 0 ≤ i < K.
If m < n and ` = n−m our fact implies that if 0 ≤ m < n < K then for each
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0 ≤ i, j < K there is exactly one pair 0 ≤ x, y < K so that x + my = i and
x+ ny = j. This shows

P (X +mY = i,X + nY = j) = 1/K2 = P (X +mY = i)P (X + nY = j)

so the variables are pairwise independent.

4.13. Let X1, X2, X3, X4 be independent and take values 1 and −1 with prob-
ability 1/2 each. Let Y1 = X1X2, Y2 = X2X3, Y3 = X3X4, and Y4 = X4X1.
It is easy to see that P (Yi = 1) = P (Yi = −1) = 1/2. Since Y1Y2Y3Y4 = 1,
P (Y1 = Y2 = Y3 = 1, Y4 = −1) = 0 and the four random variables are not
independent. To check that any three are it suffices by symmetry to consider
Y1, Y2, Y3. Let i1, i2, i3 ∈ {−1, 1}
P (Y1 = i1, Y2 = i2, Y3 = i3) = P (X2 = i1X1, X3 = i2X2, X4 = i3X3) = 1/8

= P (Y1 = i1)P (Y2 = i2)P (Y3 = i3)

4.14. Let A1 consist of the set {1, 2} and A2 consist of the sets {1, 3} and {1, 4}.
Clearly A1 and A2 are independent, but σ(A2) = the set of all subsets so σ(A1)
and σ(A2) are not independent.

4.15. {X + Y = n} = ∪m{X = m,Y = n−m}. The events on the right hand
side are disjoint, so using independence

P (X + Y = n) =
∑

m

P (X = m,Y = n−m) =
∑

m

P (X = m)P (Y = n−m)

4.16. Using 4.15, some arithmetic and then the binomial theorem

P (X + Y = n) =
n∑

m=0

e−λλ
m

m!
e−µ µn−m

(n−m)!

= e−(λ+µ) 1
n!

n∑

m=0

n!
m!(n−m)!

λmµn−m

= e−(λ+µ) (µ+ λ)n

n!

4.17. (i) Using 4.15, some arithmetic and the observation that in order to pick
k objects out of n+m we must pick j from the first n for some 0 ≤ j ≤ k we
have

P (X + Y = k) =
k∑

j=0

(
n

j

)
pj(1 − p)n−j

(
m

k − j

)
pk−j(1 − p)m−(k−j)

= pk(1 − p)n+m−k
k∑

j=0

(
n

j

)(
m

k − j

)

=
(
n+m

k

)
pk(1 − p)n+m−k
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(ii) Let ξ1, ξ2, . . . be independent Bernoulli(p). We will prove by induction that
Sn = ξ1 + · · ·+ ξn has a Binomial(n, p) distribution. This is trivial if n = 1. To
do the induction step note X = Sn−1 and Y = ξn and use (i).

4.18. (a) When k = 0, 1, 2, 3, 4, P (X + Y = k) = 1/9, 2/9, 3/9, 2/9, 1/9.
(b) We claim that the joint distribution must be

X\Y 0 1 2
2 a 2/9− a 1/9
1 2/9− a 1/9 a
0 1/9 a 2/9− a

where 0 ≤ a ≤ 2/9. To prove this let aij = P (X = i, Y = j). P (X + Y = 0) =
1/9 implies a00 = 1/9. Let a01 = a. P (X = 0) = 1/3 implies a02 = 2/9 − a.
P (X + Y = 1) = 2/9 implies a10 = 2/9 − a. P (Y = 0) = 1/3 implies a20 = a.
P (X+Y = 2) = 1/3 implies a11 = 1/9. Using the fact that the row and column
sums are 1/3 one can now fill in the rest of the table.

4.19. If we let h(x, y) = 1(xy≤z) in (4.7) then it follows that

P (XY ≤ z) =
∫∫

1(xy≤z) dF (x) dG(y) =
∫
F (z/y) dG(y)

4.20. Let i1, i2, . . . , in ∈ {0, 1} and x =
∑n

m=1 im2−m

P (Y1 = i1, . . . , Yn = in) = P (ω ∈ [x, x + 2−n)) = 2−n

1.5. Weak Laws of Large Numbers

5.1. First note that var(Xm)/m → 0 implies that for any ε > 0 there is an
A < ∞ so that var(Xm) ≤ A + εm. Using this estimate and the fact that∑n

m=1m ≤
∑n

m=1 2m− 1 = n2

E(Sn/n− νn)2 =
1
n2

n∑

m=1

var(Xm) ≤ A/n+ ε

Since ε is arbitrary this shows the L2 convergence of Sn/n − νn to 0, and
convergence in probability follows from (5.3).

5.2. Let ε > 0 and pick K so that if k ≥ K then r(k) ≤ ε. Noting that Cauchy
Schwarz implies EXiXj ≤ (EX2

i EX
2
j )1/2 = EX2

k = r(0) and breaking the sum
into |i− j| ≤ K and |i− j| > K we have

ES2
n =

∑

1≤i,j≤n

EXiXj ≤ n(2K + 1)r(0) + n2ε
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Dividing by n2 we see lim supE(Sn/n
2) ≤ ε. Since ε is arbitrary we have

Sn/n→ 0 in L2 and convergence in probability follows from (5.3).

5.3. (i) Since f(U1), f(U2), . . . are independent and have E|f(Ui)| < ∞ this
follows from the weak law of large numbers, (5.8).
(ii) P (|In − I | > a/n1/2) ≤ (n/a2)var(In) = σ2/a2 where σ2 =

∫
f2 − (

∫
f)2

5.4. Replacing log k by logn we see that

P (|Xi| > n) ≤
∞∑

k=n+1

C

k2 log k
≤ C

n logn

so nP (|Xi| > n) → 0 and (5.6) can be applied.

E|Xi| =
∞∑

k=2

C/k log k = ∞

but the truncated mean

µn = EXi1(|Xi|≤n) =
n∑

k=2

(−1)k C

k log k
→

∞∑

k=2

(−1)k C

k log k

since the latter is an alternating series with decreasing terms (for k ≥ 3).

5.5. nP (Xi > n) = e/ logn→ 0 so (5.6) can be applied. The truncated mean

µn = EXi1(|Xi|≤n) =
∫ n

e

e

x logx
dx = e log logx|ne = e log logn

so Sn/n− e log logn→ 0 in probability.

5.6. Clearly, X =
∑X

n=1 1 =
∑∞

n=1 1(X≥n) so taking expected values proves (i).
For (ii) we consider the squares [0, k]2 to get X2 =

∑∞
n=1(2n − 1)1(X≥n) and

then take expected values to get the desired formula.

5.7. Note H(X) =
∫∞
−∞ h(y)1(X≥y) dy and take expected values.

5.8. Let m(n) = inf{m : 2−mm−3/2 ≤ n−1}, bn = 2m(n). Replacing k(k+ 1) by
m(m+ 1) and summing we have

P (Xi > 2m) ≤
∞∑

k=m+1

1
2km(m+ 1)

=
2−m

m(m+ 1)

nP (Xi > bn) ≤ n2−m(n)/m(n)(m(n) + 1) ≤ (m(n) + 1)−1/2 → 0
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To check (ii) in (5.5) now, we let X̄ = X1(|X|≤2m(n)) and observe

EX̄2 ≤ 1 +
m(n)∑

k=1

22k · 1
2kk(k + 1)

To estimate the sum divide it into k ≥ m(n)/2 and 1 ≤ k < m(n)/2 and replace
k by the smallest value in each piece to get

≤ 1 +
m(n)/2∑

k=1

2k +
4

m(n)2

m(n)∑

k=m(n)/2

2k

≤ 1 + 2 · 2m(n)/2 + 8 · 2m(n)/m(n)2 ≤ C2m(n)/m(n)2

Using this inequality it follows that

nEX̄2

b2n
≤
C2m(n)

m(n)2
·

n

22m(n)
≤

C

m(n)1/2
→ 0

The last detail is to compute

an = E(X̄) = −
∞∑

k=m(n)+1

(2k − 1)
1

2kk(k + 1)

= −
∞∑

k=m(n)+1

(
1
k
− 1
k + 1

)
+

∞∑

k=m(n)+1

1
2kk(k + 1)

= − 1
m(n) + 1

+
∞∑

k=m(n)+1

1
2kk(k + 1)

∼ − 1
m(n)

∼ − 1
log2 n

From the definition of bn it follows that 2m(n)−1 ≤ n/m3/2 ∼ n/(log2 n)3/2 so
(5.5) implies

Sn + n/ log2 n

n/(log2 n)3/2
→ 0

5.9. nµ(s)/s→ 0 as s→ ∞ and for large n we have nµ(1) > 1, so we can define
bn = inf{s ≥ 1 : nµ(s)/s ≤ 1}. Since nµ(s)/s only jumps up (at atoms of F ),
we have nµ(bn) = bn. To check the assumptions of (5.5) now, we note that
n = bn/µ(bn) so

nP (|Xk| > bn) =
bn(1 − F (bn))

µ(bn)
=

1
ν(bn)

→ 0
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since bn → ∞ as n→ ∞. To check (ii), we observe

∫ bn

0

µ(x) dx ≤ bnµ(bn) = b2n/n

So using (5.7) with p = 2

b−2
n nEX̄2

n,k ≤
∫ bn

0
2x(1 − F (x)) dx
∫ bn

0 µ(x) dx
→ 0

since ν(s) → ∞ as s → ∞. To derive the desired result now we note that
an = nµ(bn) = bn.

1.6. Borel-Cantelli Lemmas

6.1. Let ε > 0. Pick N so that P (|X | > N) ≤ ε, then pick δ < 1 so that if
x, y ∈ [−N + 1, N + 1] and |x− y| < δ then |f(x) − f(y)| < ε.

P (|f(Xn) − f(X)| > ε) ≤ P (|X | > N) + P (|X −Xn| > δ)

so lim supn→∞ P (|f(Xn) − f(X)| > ε) ≤ ε. Since ε is arbitrary the desired
result follows.

6.2. Pick nk so that EXnk
→ lim infn→∞ EXn. By (6.2) there is a further

subsequence Xn(mk) so that Xn(mk) → X a.s. Using Fatou’s lemma and the
choice of nk it follows that

EX ≤ lim inf
k→∞

EXn(mk) = lim inf
n→∞

EXn

6.3. If Xn(m) is a subsequence there is a further subsequence so that Xn(mk) →
X a.s. We have EXn(mk) → EX by (a) (3.7) or (b) (3.8). Using (6.3) it follows
that EXn → EX .

6.4. Let ϕ(z) = |z|/(1 + |z|). (i) Since ϕ(z) > 0 for z 6= 0, Eϕ(|X − Y |) = 0
implies ϕ(|X − Y |) = 0 a.s. and hence X = Y a.s. (ii) is obvious. (iii) follows
by noting that Exercise 4.10 implies ϕ(|X −Y |)+ϕ(|Y −Z|) ≥ ϕ(|X −Z|) and
then taking expected value. To check (b) note that if Xn → X in probability
then since ϕ ≤ 1, Exercise 6.3 implies d(Xn, X) = Eϕ(|Xn−X |) → 0. To prove
the converse let ε > 0 and note that Chebyshev’s inequality implies

P (|Xn −X | > ε) ≤ d(Xn, X)/ϕ(ε) → 0
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6.5. Pick Nk so that if m,n ≥ Nk then d(Xm, Xn) ≤ 2−k. Given a subsequence
Xn(m) pick mk increasing so that n(mk) ≥ Nk. Using Chebyshev’s inequality
with ϕ(z) = z/(1 + z) we have

P (|Xn(mk) −Xn(mk+1)| > k−2) ≤ (k2 + 1)2−k

The right hand side is summable so the Borel-Cantelli lemma implies that for
large k, we have |Xn(mk) − Xn(mk+1)| ≤ k−2. Since

∑
k k

−2 < ∞ this and
the triangle inequality imply that Xn(mk) converges a.s. to a limit X . To see
that the limit does not depend on the subsequence note that if Xn′(m′

k
) → X ′

then our original assumption implies d(Xn(mk), Xn′(m′
k
)) → 0, and the bounded

convergence theorem implies d(X,X ′) = 0. The desired result now follows from
(6.2).

6.6. Clearly, P (∪m≥nAm) ≥ maxm≥n P (Am). Letting n → ∞ and using (iv)
of (1.1), it follows that P (lim supAm) ≥ lim supP (Am). The result for lim inf
can be proved be imitating the proof of the first result or applying it to Ac

m.

6.7. Using Chebyshev’s inequality we have for large n

P (|Xn −EXn| > δEXn) ≤ var(Xn)
δ2(EXn)2

≤ Bnβ

δ2(a2/2)n2α
= Cnβ−2α

If we let nk = [k2/(2α−β)] + 1 and Tk = Xnk
then the last result says

P (|Tk −ETk| > δETk) ≤ Ck−2

so the Borel Cantelli lemma implies Tk/ETk → 1 almost surely. Since we have
ETk+1/ETk → 1 the rest of the proof is the same as in the proof of (6.8).

6.8. Exercise 4.16 implies that we can subdivide Xn with large λn into several
independent Poissons with mean ≤ 1 so we can suppose without loss of general-
ity that λn ≤ 1. Once we do this and notice that for a Poisson var(Xm) = EXm

the proof is almost the same as that of (6.8).

6.9. The events {`n = 0} = {Xn = 0} are independent and have probability
1/2, so the second Borel Cantelli lemma implies that P (`n = 0 i.o.) = 1. To
prove the other result let r1 = 1 r2 = 2 and rn = rn−1 + [log2 n]. Let An =
{Xm = 1 for rn−1 < m ≤ rn}. P (An) ≥ 1/n, so it follows from the second
Borel Cantelli lemma that P (An i.o.) = 1, and hence `rn ≥ [log2 n] i.o. Since
rn ≤ n log2 n we have

`rn

log2(rn)
≥

[log2 n]
log2 n+ log2 log2 n



Section 1.6 Borel-Cantelli Lemmas 17

infinitely often and the desired result follows.

6.10. Pick εn ↓ 0 and pick cn so that P (|Xn| > εncn) ≤ 2−n. Since
∑

n 2−n <∞,
the Borel-Cantelli lemma implies P (|Xn/cn| > εn i.o.) = 0.

6.11. (i) Let Bn = Ac
n ∩ An+1 and note that as n→ ∞

P (∪∞
m=nAm) ≤ P (An) +

∞∑

m=n

P (Bm) → 0

(ii) Let An = [0, εn) where εn ↓ 0 and
∑

n εn = ∞. The Borel-Cantelli lemma
cannot be applied but P (An) → 0 and P (Ac

n ∩An+1) = 0 for all n.

6.12. Since the events Ac
m are independent

P (∩n
m=1Am) =

n∏

m=1

(1 − P (Am))

If P (∪mAm) = 1 then the infinite product is 0, but when P (Am) < 1 for all m
this imples

∑
P (Am) = ∞ (see Lemma) and the result follows from the second

Borel-Cantelli lemma.

Lemma. If P (Am) < 1 for all m and
∑

m P (Am) <∞ then

∞∏

m=1

(1 − P (Am) > 0

To prove this note that if
∑n

k=1 P (Ak) < 1 and πm =
∏m

k=1(1 − P (Ak)) then

1 − πn =
n∑

m=1

πm−1 − πm ≤
n∑

k=1

P (Ak) < 1

so if
∑∞

m=M P (Am) < 1 then
∏∞

m=M (1− P (Am)) > 0. If P (Am) < 1 for all m
then

∏M
m=1(1 − P (Am)) > 0 and the desired result follows.

6.13. If
∑

n P (Xn > A) < ∞ then P (Xn > A i.o.) = 0 and supnXn < ∞.
Conversely, if

∑
n P (Xn > A) = ∞ for all A then P (Xn > A i.o.) = 1 for all A

and supnXn = ∞.

6.14. Note that if 0 < δ < 1 then P (|Xn| > δ) = pn. (i) then follows im-
mediately, and (ii) from the fact that the two Borel Cantelli lemmas imply
P (|Xn| > δ i.o.) is 0 or 1 according as

∑
n pn <∞ or = ∞.

6.15. The answers are (i) E|Yi| <∞, (ii) EY +
i <∞, (iii) nP (Yi > n) → 0, (iv)

P (|Yi| <∞) = 1.
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(i) If E|Yi| < ∞ then
∑

n P (|Yn| > δn) < ∞ for all n so Yn/n → 0 a.s.
Conversely if E|Yi| = ∞ then

∑
n P (|Yn| > n) = ∞ so |Yn|/n ≥ 1 i.o.

(ii) If EY +
i <∞ then

∑
n P (Yn > δn) <∞ for all n so lim supn→∞ Y +

n /n ≤ 0
a.s., and it follows that max1≤m≤n Ym/n → 0 Conversely if EY +

i = ∞ then∑
n P (Yn > n) = ∞ so Yn/n ≥ 1 i.o.

(iii) P (max1≤m≤n Ym ≥ δn) ≤ nP (Yi ≥ nδ) → 0. Now, if nP (Yi > n) 6→ 0 we
can find a δ ∈ (0, 1), nk → ∞ and mk ≤ nk so that mkP (Yi > nk) → δ. Using
the second Bonferroni inequality we have

P

(
max

1≤m≤mk

Ym > nk

)
≥ mkP (Yi > nk) −

(
mk

2

)
P (Yi > nk)2 → δ − δ2/2 > 0

(iv) P (|Yn|/n > δ) = P (|Yn| > nδ) → 0 if P (|Yi| <∞) = 1.

6.16. Note that we can pick δn → 0 so that P (|Xn − X | > δn) → 0. Let
ω ∈ Ω with P (ω) = p > 0. For large n we have P (|Xn − X | > δn) ≤ p/2 so
|Xn(ω) − X(ω)| ≤ δn → 0. If Ω0 = {ω : P ({ω}) > 0} then P (Ω0) = 1 so we
have proved the desired result.

6.17. If m is an integer P (Xn ≥ 2m) = 2−m+1 so taking xn = log2(Kn log2 n)
and mn = [xn] + 1 ≤ xn + 1 we have P (Xn > 2xn) ≥ 2−xn = 1/Kn log2 n.
Since

∑
n 1/n log2 n = ∞ the second Borel Cantelli lemma implies that with

probability one Xn > 2xn i.o. Since K is arbitrary the desired result follows.

6.18. (i) P (Xn ≥ logn) = 1/n and these events are independent so the second
Borel-Cantelli implies P (Xn ≥ logn i.o.) = 1. On the other hand P (Xn ≥
(1 + ε) logn) = 1/n1+ε so the first Borel-Cantelli lemma implies P (Xn ≥ (1 +
ε) logn i.o.) = 0.

(ii) The first result implies that if ε > 0 then Xn ≤ (1 + ε) logn for large n so
lim supn→∞Mn/ logn ≤ 1. On the other hand if ε > 0

P (Mn < (1 − ε) logn) = (1 − n−(1−ε))n ≤ e−nε

which is summable so the first Borel-Cantelli lemma implies

P (Mn < (1 − ε) logn i.o.) = 0

6.19. The Borel-Cantelli lemmas imply that P (Xm > λmi.o. ) = 0 or 1 ac-
cording as

∑
m P (Xm > λm) < ∞ or = ∞. If Xn > λn infinitely often then

max1≤m≤nXm > λn infinitely often. Conversely, if Xn ≤ λn for large n ≥ N0

then for n ≥ N1 we will have max1≤m≤nXm ≤ λn.
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6.20. Let Xn =
∑

k≤n 1Ak
and Yn = Xn/EXn. Our hypothesis implies

lim sup
n→∞

1/EY 2
n = α

Letting a = ε in Exercise 3.8 and noting EYn = 1 we have

P (Yn > ε) ≥ (1 − ε)2/EY 2
n

so using the definition of Yn and Exercise 6.6 we have

P (An i.o.) ≥ P (lim supYn > ε) ≥ lim supP (Yn > ε) ≥ (1 − ε)2α

1.7. Strong Law of Large Numbers

7.1. Our probability space is the unit interval, with the Borel sets and Lebesgue
measure. For n ≥ 0, 0 ≤ m < 2n, let X2n+m = 1 on [m/2n, (m + 1)/2n),
0 otherwise. Let N(n) = 2n + m on [m/2n, (m + 1)/2n). Then Xk → 0 in
probability but XN(n) ≡ 1.

7.2. Let Sn = X1+· · ·+Xn, Tn = Y1+· · ·+Yn, andN(t) = sup{n : Sn+Tn ≤ t}.

SN(t)

SN(t)+1 + TN(t)+1
≤ Rt

t
≤

SN(t)+1

SN(t) + TN(t)

To handle the left-hand side we note

SN(t)

N(t)
· N(t) + 1
SN(t)+1 + TN(t)+1

· N(t)
N(t) + 1

→ EX1 ·
1

EX1 +EY1
· 1

A similar argument handles the right-hand side and completes the proof.

7.3. Our assumptions imply |Xn| = U1 · · ·Un where the Ui are i.i.d. with P (Ui ≤
r) = r2 for 0 ≤ r ≤ 1.

1
n

log |Xn| =
1
n

n∑

m=1

logUm → E logUm

by the strong law of large numbers. To compute the constant we note

E logUm =
∫ 1

0

2r log r dr = (r2 log r − r2/2)
∣∣1
0

= −1/2
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7.4. (i) The strong law of large numbers implies

n−1 logWn → c(p) = E log(ap+ (1 − p)Vn)

(ii) Differentiating we have

c′(p) = E

(
a− Vn

ap+ (1 − p)Vn

)
c′′(p) = −E

(
(a− Vn)2

(ap+ (1 − p)Vn)2

)
< 0

(iii) In order to have a maximum in (0, 1) we need c′(0) > 0 and c′(1) < 0, i.e.,
aE(1/Vn) > 1 and EVn > a.
(iv) In this case E(1/V ) = 5/8, EV = 5/2 so when a > 5/2 the maximum is at
1 and if a < 8/5 the maximum is at 0. In between the maximum occurs at the
p for which

1
2
· a− 1
ap+ (1 − p)

+
1
2
· a− 4
ap+ 4(1 − p)

= 0

a− 1
(a− 1)p+ 1

=
4 − a

(a− 4)p+ 4
or

Cross-multiplying gives

(a− 1)(a− 4)p+ 4(a− 1) = (4 − a)(a− 1)p+ (4 − a)

and solving we have p = (5a − 8)/{2(4 − a)(a − 1)}. It is comforting to note
that this is 0 when a = 8/5 and is 1 when a = 5/2.

1.8. Convergence of Random Series

8.1. It suffices to show that if p > 1/2 then lim supn→∞ Sn/n
p ≤ 1 a.s., for then

if q > p, Sn/n
q → 0. (8.2) implies

P

(
max

(m−1)α≤n≤mα
|Sn| ≥ mαp

)
≤ Cmα/m2αp

When α(2p − 1) > 1 the right hand side is summable and the desired result
follows from the Borel-Cantelli lemma.

8.2. E|X |p = ∞ implies
∑∞

n=1 P (|Xn| > n1/p) = ∞ which in turn implies that
|Xn| ≥ n1/p i.o. The desired result now follows from

max{|Sn−1|, |Sn|} ≥ |Xn|/2
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8.3. Yn = Xn sin(nπt)/n has mean 0 and variance≤ 1/n2. Since
∑∞

n=1 var(Yn) <
∞ the desired result follows from (8.3).

8.4. (i) follows from (8.3) and (8.5). For (ii) let

P (Xn = n) = P (Xn = −n) = σ2
n/2n

2 P (Xn = 0) = 1 − σ2
n/n

2

∑∞
n=1 σ

2
n/2n

2 = ∞ implies P (Xn ≥ n i.o.) = 1.

8.5. To prove that (i) is equivalent to (ii) we use Kolmogorov’s three series
theorem (8.4) with A = 1 and note that if Yn = Xn1(Xn≤1) then var(Yn) ≤
EY 2

n ≤ EYn. To see that (ii) is equivalent to (iii) note

Xn

1 +Xn
≤ Xn1(Xn≤1) + 1(Xn>1) ≤

2Xn

1 +Xn

8.6. We check the convergence of the three series in (8.4)

∞∑

n=1

P (|Xn| > 1) ≤
∞∑

n=1

E|Xn|1(|Xn|>1) <∞

Let Yn = Xn1(|Xn|≤1). EXn = 0 implies EYn = −EXn1(|Xn|>1) so

∞∑

n=1

|EYn| ≤
∞∑

n=1

E|Xn|1(|Xn|>1) <∞

Last and easiest we have

∞∑

n=1

var(Yn) ≤
∞∑

n=1

E|Xn|21(|Xn|≤1) <∞

8.7. We check the convergence of the three series in (8.4).

∞∑

n=1

P (|Xn| > 1) ≤
∞∑

n=1

E|Xn|p(n) <∞

Let Yn = Xn1(|Xn|≤1). If 0 < p(n) ≤ 1, |Yn| ≤ |Xn|p(n) so |EYn| ≤ E|Xn|p(n).
If p(n) > 1 then EXn = 0 implies EYn = −EXn1(|Xn|>1) so we again have
|EYn| ≤ E|Xn|p(n) and it follows that

∞∑

n=1

|EYn| ≤
∞∑

n=1

E|Xn|p(n) <∞
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Last and easiest we have
∞∑

n=1

var(Yn) ≤
∞∑

n=1

EY 2
n ≤

∞∑

n=1

E|Xn|p(n) <∞

8.8. If E log+ |X1| = ∞ then for any K < ∞,
∑∞

n=1 P (log+ |Xn| > Kn) = ∞,
so |Xn| > eKn i.o. and the radius of convergence is 0.
If E log+ |X1| < ∞ then for any ε > 0,

∑∞
n=1 P (log+ |Xn| > εn) < ∞, so

|Xn| ≤ eεn for large n and the radius of convergence is ≥ e−ε. If the Xn are
not ≡ 0 then P (|Xn| > δ i.o.) = 1 and

∑∞
n=1 |Xn| · 1n = ∞.

8.9. Let Ak = {|Sm,k| > 2a, |Sm,j | ≤ 2a,m ≤ j < k} and let Gk = {|Sk,n| ≤
a}. Since the Ak are disjoint, Ak ∩ Gk ⊂ {|Sm,n| > a}, and Ak and Gk are
independent

P (|Sm,n| > a) ≥
n∑

k=m+1

P (Ak ∩Gk)

=
n∑

k=m+1

P (Ak)P (Gk) ≥ min
m<k≤n

P (Gk)
n∑

k=m+1

P (Ak)

8.10. Let Sk,n = Sn −Sk. Convergence of Sn to S∞ in probability and |Sk,n| ≤
|Sk − S∞| + |S∞ − Sn| imply

min
m≤k≤n

P (|Sk,n| ≤ a) → 1

as m,n→ ∞. Since P (|Sm,n| > a) → 0, (?) implies

P

(
max

m<j≤n
|Sm,j | > 2a

)
→ 0

As at the end of the proof of (8.3) this implies that with probability 1, Sm(ω)
is a Cauchy sequence and converges a.s.

8.11. Let Sk,n = Sn −Sk. Convergence of Sn/n to 0 in probability and |Sk,n| ≤
|Sk| + |Sn| imply that if ε > 0 then

min
0≤k≤n

P (|Sk,n| ≤ nε) → 1

as n→ ∞. Since P (|Sn| > nε) → 0, (?) with m = 0 implies

P

(
max

0<j≤n
|Sj | > 2nε

)
→ 0
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8.12. (i) Let Sk,n = Sn − Sk. Convergence of Sn/a(n) to 0 in probability and
|Sk,`| ≤ |Sk| + |S`| imply that if ε > 0 then

min
2n−1≤k≤2n

P (|Sk,2n | ≤ εa(2n)) → 1

as n→ ∞. Using (?) now we see that if n is large

P

(
max

2n−1<j≤2n
|S2n−1,j | > 2εa(2n)

)
≤ 2P (|S2n−1,2n | > εa(2n))

The events on the right hand side are independent and only occur finitely often
(since S2n/a(2n) → 0 almost surely) so the second Borel Cantelli lemma implies
that their probabilities are summable and the first Borel Cantelli implies that
the event on the right hand side only occurs finitely often. Since a(2n)/a(2n−1)
is bounded the desired result follows.

(ii) Let an = n1/2(log2 n)1/2+ε. It suffices to show that Sn/an → 0 in probability
and S(2n)/2n/2n1/2+ε → 0 almost surely. For the first conclusion we use the
Chebyshev bound

P (|Sn/an| > δ) ≤ ES2
n/(δ

2a2
n) =

σ2

δ2(log2 n)1+2ε

Noting a(2n) = 2n/2n1/2+ε we have

P (|S(2n)| > δ2n/2n1/2+ε) ≤ σ2δ−2n−1−2ε

and the desired result follows from the Borel-Cantell lemma.
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1.9. Large Deviations

9.1. Taking n = 1 in (9.2) we see that γ(a) = −∞ implies P (X1 ≥ a) = 0.
If Sn ≥ na then Xm ≥ a for some m ≤ n so (b) implies (c). Finally if
P (Sn ≥ na) = 0 for all n then γ(a) = −∞.

9.2. Suppose n = km where mλ is an integer.

P (Sn ≥ n{λa+ (1 − λ)b}) ≥ P (Snλ ≥ nλa)P (Sn(1−λ) ≥ n(1 − λ)b)

Taking (1/n) log of both sides and letting k → ∞ gives

γ(λa+ (1 − λ)b) ≥ λγ(a) + (1 − λ)γ(b)

If, without loss of generality a < b then letting qn ↑ λ where qn are rationals and
using monotonicity extends the result to irrational λ. For a concave function
f , increasing a or h > 0 decreases (f(a + h) − f(a))/h. From this observation
the Lipschitz continuity follows easily.

9.3. Since P (X ≤ xo) = 1, EeθX < ∞ for all θ > 0. Since Fθ is concentrated
on (−∞, xo] it is clear that its mean µθ = ϕ′(θ)/ϕ(θ) ≤ xo. On the other hand
if δ > 0, then P (X ≥ xo − δ) = cδ > 0, EeθX ≥ cδe

θ(xo−δ), and hence

Fθ(xo − 2δ) =
1

ϕ(θ)

∫ xo−2δ

−∞
eθxdF (x) ≤ exo−2δ)θ

cδe(xo−δ)θ
= e−θδ/cδ → 0

Since δ > 0 is arbitrary it follows that µθ → xo.

9.4. If we let χ have the standard normal distribution then for a > 0

P (Sn ≥ na) = P (χ ≥ a
√
n) ∼ (a

√
n)−1 exp(−a2n/2)

so (1/n) logP (Sn ≥ na) → −a2/2.

9.5.

EeθX =
∞∑

n=0

e−1eθn/n! = exp(eθ − 1)

so κ(θ) = eθ − 1, ϕ′(θ)/ϕ(θ) = κ′(θ) = eθ, and θa = log a. Plugging in gives

γ(a) = −aθa + κ(θa) = −a log a+ a− 1

9.6. 1+x ≤ ex with x = ϕ(θ)−1 gives ϕ(θ) ≤ exp(ϕ(θ)−1) To prove the other
inequality, we note that

ϕ(θ) − 1 =
eθ − 2 + e−θ

2
=

∞∑

n=1

θ2n

(2n)!
≤ βθ2
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(9.3) implies P (Sn ≥ na) ≤ exp(−n{aθ − βθ2}). Taking θ = a/2β to minimize
the upper bound the desired result follows.

9.7. Since γ(a) is decreasing and ≥ logP (X = xo) for all a < xo we have only
to show that lim sup γ(a) ≤ P (X = xo). To do this we begin by observing that
the computation for coin flips shows that the result is true for distributions that
have a two point support. Now if we let X̄i = xo − δ when Xi ≤ xo − δ and
X̄i = xo when xo − δ < Xi ≤ xo then S̄n ≥ Sn and hence γ̄(a) ≥ γ(a) but
γ̄(a) ↓ P (X̄i = xo) = P (xo − δ < Xi ≤ xo). Since δ is aribitrary the desired
result follows.

9.8. Clearly, P (Sn ≥ na) ≥ P (Sn−1 ≥ −nε)P (Xn ≥ n(a + ε)). The fact that
EeθX = ∞ for all θ > 0 implies lim supn→∞(1/n) logP (Xn > na) = 0, and the
desired conclusion follows as in the proof of (9.6).

9.9. Let pn = P (Xi > (a+ ε)n). E|Xi| <∞ implies

P

(
max
i≤n

Xi > n(a+ ε)
)

≤ npn → 0

and hence P (Fn) = npn(1− pn)n−1 ∼ npn. Breaking the event Fn into disjoint
pieces according to the index of the large value, and noting

P

(
|Sn−1| < nε

∣∣∣∣max
i≤n

Xi ≤ n(a+ ε)
)

→ 0

by the weak law of large numbers and the fact that the conditioning event has
a probability → 1 the desired result follows.



2 Central Limit Theorems

2.1. The De Moivre-Laplace Theorem

1.1. Since log(1 + x)/x → 1 as x → 0, it follows that given an ε > 0 there is a
δ > 0 so that if |x| < δ then (1 − ε)x < log(1 + x) < (1 + ε)x. From this it is
easy to see that our assumptions imply

n∑

j=1

log(1 + cj,n) → λ

and the desired result follows.

1.2. Applying Stirling’s formula to n! we have
√

2πnP (Sn = n+m) =
√

2πne−nnn+m/(n+m)!

∼ n!nm

(n+m)!
=

(
m∏

k=1

1 +
k

n

)−1

∑m
k=1 k ∼ m2/2 so if m ∼ x

√
n, Exercise 1.1 implies the quantity in parentheses

converges to exp(x2/2).

1.3. Using (1.2) and writing o(1) to denote a term that goes to 0 as n→ ∞ we
have

1
2n

logP (S2n = 2k) = −n+ k

2n
log
(

1 +
k

n

)
− n− k

2n
log
(

1 − k

n

)
+ o(1)

→ −1 + a

2
log(1 + a) − 1 − a

2
log(1 − a)

when k/n→ a. Now if k/n ≥ a > 0 we have

P (S2n = 2k + 2) =
n− k

n+ k + 1
P (S2n = 2k) ≤ 1 − a

1 + a
P (S2n = 2k)
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and summing a geometric series we have P (S2n ≥ 2k) ≤ CP (S2n = 2k).

1.4. P (Sn = k) = e−nnk/k! and k! ∼ kke−k
√

2πk so

P (Sn = k) ∼ e−n+k
(n
k

)k

/
√

2πk

and if k/n→ a we have

1
n

logP (Sn = k) = −n− k

n
− k

n
log
(
k

n

)
+ o(1) → a− 1 − a log a

Now if k/n ≥ a > 1 we have

P (Sn = k + 1) =
n

k + 1
P (Sn = k) ≤ 1

a
P (Sn = k)

and the result follows as in Exercise 1.3.

2.2. Weak Convergence

2.1. Let fn(x) = 2 if x ∈ [m/2n, (m+1)/2n) and 0 ≤ m < 2n is an even integer.

2.2. As n→ ∞
(i) P (Mn ≤ yn1/α) = (1 − y−αn−1)n → exp(−y−α)
(ii) P (Mn ≤ yn−1/β) = (1 − |y|βn−1)n → exp(−|y|β)
(iii) P (Mn ≤ logn+ y) = (1 − e−yn−1)n → exp(−e−y)

2.3. (i) From the asymptotic formula it follows that

lim
x→∞

P (Xi > x+ (θ/x))
P (Xi > x)

= lim
x→∞

x

x+ (θ/x)
exp(−θ − {θ2/2x2}) = e−θ

(ii) Let pn = P (Xi > bn + (x/bn)) and note that the definition of bn and (i)
imply npn → e−x so

P (bn(Mn − bn) ≤ x) = (1 − pn)n → exp(−e−x)

(iii) By (1.4) we have

P (Xi > (2 logn)1/2) ∼
1

(2 logn)1/2
·

1
n

so for large n, bn ≤ (2 logn)1/2. On the other hand

P (Xi > {2 logn− 2 log logn)}1/2) ∼ 1
(2 logn)1/2

· logn
n
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so for large n bn ≥ (2 logn−2 log logn)1/2 From (ii) we see that if xn → ∞ and
yn → −∞

P

(
yn

bn
≤Mn − bn ≤ xn

bn

)
→ 1

Taking xn, yn = o(bn) the desired result follows.

2.4. Let Yn
d= Xn with Yn → Y∞ a.s. 0 ≤ g(Yn) → g(Y∞) so the desired result

follows from Fatou’s lemma.

2.5. Let Yn
d= Xn with Yn → Y∞ a.s. 0 ≤ g(Yn) → g(Y∞) so the desired result

follows from (3.8) in Chapter 1.

2.6. Let xj,k = inf{x : F (x) > j/k}. Since F is continuous xj,k is a continuity
point so Fn(xj,k) → F (xj,k). Pick Nk so that if n ≥ Nk then |Fn(xj,k) −
F (xj,k)| < 1/k for 1 ≤ j < k. Repeating the proof of (7.4) in Chapter 1 now
shows supx |Fn(x) − F (x)| ≤ 2/k and since k is arbitrary the desired result
follows.

2.7. Let X1, X2, . . . be i.i.d. with distribution function F and let

Fn(x) = n−1
n∑

m=1

1Xm(ω)≤x

(7.4) implies that supx |Fn(x) − F (x)| → 0 with probability one. Pick a good
outcome ω0, let xn,m = Xm(ω0) and an,m = 1/n.

2.8. Suppose first that integer valued Xn ⇒ X∞. Since k + 1/2 is a continuity
point, for each k ∈ Z

P (Xn = k) = Fn(k + 1/2) − Fn(k − 1/2)
→ F (k + 1/2)− F (k − 1/2) = P (X∞ = k)

To prove the converse let ε > 0 and find points I = {x1, . . . xj} so that P (X∞ ∈
I) ≥ 1 − ε. Pick N so that if n ≥ N then |P (Xn = xi) − P (X∞ = xi)| ≤ ε/j.
Now let m be an integer, let Im = I ∩ (−∞,m], and let Jm be the integers ≤ m
not in Im. The triangle inequality implies that if n ≥ N then

|P (Xn ∈ Im) − P (X∞ ∈ Im)| ≤ ε

The choice of x1, . . . xj implies P (X∞ ∈ Jm) ≤ ε while the convergence for
all xi implies that P (Xn ∈ Jm) ≤ 2ε for n ≥ N . Combining the last three
inequalities implies |P (Xn ≤ m) − P (X∞ ≤ m)| ≤ 3ε for n ≥ N . Since ε is
arbitrary we have shown P (Xn ≤ m) → P (X∞ ≤ m). Since this holds for
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all integers and the distribution function is constant in between integers the
desired result follows.

2.9. If Xn → X in probability and g is bounded and continuous then Eg(Xn) →
Eg(X) by (6.4) in Chapter 1. Since this holds for all bounded continuous
functions (2.2) implies Xn ⇒ X .
To prove the converse note that P (Xn ≤ c + ε) → 1 and P (Xn ≤ c − ε) → 0,
so P (|Xn − c| > ε) → 0, i.e., Xn → c in probability.

2.10. If Xn ≤ x− c− ε and Yn ≤ c+ ε then Xn + Yn ≤ x so

P (Xn + Yn ≤ x) ≥ P (Xn ≤ x− c− ε) − P (Yn > c+ ε)

The second probability → 0. If x− c− ε is a continuity point of the distribution
of X the first probability → P (X ≤ x− c− ε). Letting ε→ 0 it follows that if
x is a continuity point of the distribution of X + c

lim inf
n→∞

P (Xn + Yn ≤ x) ≥ P (X + c ≤ x)

P (Xn + Yn ≤ x) ≤ P (Xn ≤ x− c+ ε) +P (Yn < c− ε). The second probability
→ 0. If x−c+ε is a continuity point of the distribution of X the first probability
→ P (X ≤ x− c+ ε). Letting ε→ 0 it follows that

lim sup
n→∞

P (Xn + Yn ≤ x) ≤ P (X + c ≤ x)

2.11. Suppose that x ≥ 0. The argument is similar if x < 0 but some details
like the next inequality are different.

P (XnYn ≤ x) ≥ P (Xn ≤ x/(c+ ε)) − P (Yn > c+ ε)

The second probability → 0. If x/(c+ε) is a continuity point of the distribution
of X the first probability → P (X ≤ x/(c+ ε)). Letting ε→ 0 it follows that if
x is a continuity point of the distribution of cX

lim inf
n→∞

P (XnYn ≤ x) ≥ P (cX ≤ x)

Let ε < c. P (XnYn ≤ x) ≤ P (Xn ≤ x/(c − ε)) + P (Yn < c − ε). The second
probability → 0. If x/(c− ε) is a continuity point of the distribution of X the
first probability → P (X ≤ x/(c− ε)). Letting ε→ 0 it follows that

lim sup
n→∞

P (XnYn ≤ x) ≤ P (cX ≤ x)
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2.12. The spherical symmetry of the normal distribution implies that the X i
n

are unifrom over the surface of the sphere. The strong law of large numbers
implies Yin/

∑n
m=1 Y

2
m → Yi almost surely so the desired result follows from

Exercise 2.9.

2.13. EY β
n → 1 implies EY β

n ≤ C so (2.7) implies that the sequence is tight.
Suppose µn(k) ⇒ µ, and let Y be a random variable with distribution µ. Exer-
cise 2.5 implies that if α < β then EY α = 1. If we let γ ∈ (α, β) we have

EY γ = 1 = (EY α)γ/α

so for the random variable Y α and the convex function ϕ(x) = (x+)γ/α we have
equality in Jensen’s inequality and Exercise 3.3 in Chapter 1 implies Y α = 1
a.s.

2.14. Suppose there is a sequence of random variables with P (|Xn| > y) → 0,
EX2

n = 1, and EX4
n ≤ K. (2.7) implies that Xn is tight and hence there

is a subsequence Xn(k) ⇒ X . Exercise 2.5 implies that EX2
n(k) → EX2 but

P (|X | ≤ y) = 1 so EX2 ≤ y2 < 1 a contradiction.

2.15. First we check that ρ is a metric. Clearly ρ(F,G) = 0 if and only if F = G.
It is also easy to see that ρ(F,G) = ρ(G,F ). To check the triangle inequality
we note that if G(x) ≤ F (x + a) + a and H(x) ≤ G(x + b) + b for all x then
H(x) ≤ F (x + a+ b) + a+ b for all x.
Suppose now that εn = ρ(Fn, F ) → 0. Letting n→ ∞ in

F (x− εn) − εn ≤ Fn(x) ≤ F (x+ εn) + εn

we see that Fn(x) → F (x) at continuity points of F . To prove the converse
let ε > 0 and let x1, . . . , xk be continuity points of F so that F (x1) < ε,
F (xk) > 1 − ε and |xj − xj+1| < ε for 1 ≤ j < k. If Fn ⇒ F then for n ≥ N
we have |Fn(xj) − F (xj)| ≤ ε for all j. To handle the other values note that if
xj < x < xj+1 then for n ≥ N

Fn(x) ≤ Fn(xj+1) ≤ F (xj+1) + ε ≤ F (x+ ε) + ε

Fn(x) ≥ Fn(xj) ≥ F (xj) − ε ≥ F (x− ε) − ε

If x < x1 then we note

Fn(x) ≤ Fn(x1) ≤ F (x1) + ε ≤ 2ε ≤ F (x+ 2ε) + 2ε
Fn(x) ≥ 0 ≥ F (x − ε) − ε

A similar argument handles x > xk and shows ρ(Fn, F ) ≤ 2ε for n ≥ N .

2.16. To prove this result we note that

P (Y ≤ x− ε)−P (|X −Y | > ε) ≤ P (X ≤ x) ≤ P (Y ≤ x+ ε) +P (|X − Y | > ε)
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2.17. If α(X,Y ) = a then P (|X − Y | ≥ a) ≥ a ≥ P (|X − Y | > a). The worst
case for the lower bound is P (|X − Y | = a) = a, P (|X − Y | = 0) = 1− a. The
worst case for the upper bound is P (|X−Y | = a) = 1−a, P (|X−Y | ≈ ∞) = a.

2.3. Characteristic Functions

3.1. Reϕ = (ϕ + ϕ)/2 and |ϕ|2 = ϕ · ϕ. If X has ch.f. ϕ then −X has ch.f. ϕ,
so the desired results follow from (3.1g) and (3.1f).

3.2. (i) Using Fubini’s theorem and the fact that sin is odd

1
2T

∫ T

−T

e−ita

∫
eitx µ(dx) dt =

∫
1

2T

∫ T

−T

eit(x−a) dt µ(dx)

=
∫

1
2T

∫ T

−T

cos(t(x − a)) dt µ(dx)

Now | 1
2T

∫ T

−T cos(t(x− a)) dt| ≤ 1, and as T → ∞

1
2T

∫ T

−T

cos(t(x− a)) dt →
{ 0 x 6= a

1 x = a

so the bounded convergence theorem gives the desired result.
(ii) The periodicity follows from the fact that e2πni = 1 for any integer n. From
this it follows easily that

lim
T→∞

1
2T

∫ T

−T

e−itxϕ(t) dt =
h

2π

∫ π/h

−π/h

e−itxϕ(t) dt

To see this note that when T = πn/h and n is an integer the integral on the
left is equal to the one on the right, and we have shown in (i) that the limit on
the left exists.
(iii) The first assertion follows from (3.1e). Letting Y = X − b and applying
(ii) to ϕY the ch.f. of Y

P (X = a) = P (Y = a− b) =
h

2π

∫ π/h

−π/h

e−it(a−b)ϕY (t) dt

=
h

2π

∫ π/h

−π/h

e−itaϕX(t) dt

3.3. If X has ch.f. ϕ then −X has ch.f. ϕ. If ϕ is real ϕ = ϕ so the inversion
formula (3.3) implies X d= −X .
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3.4. By Example 3.3 and (3.1f), X1 +X2 has ch.f. exp(−(σ2
1 + σ2

2)t
2/2).

3.5. Examples 3.4 and 3.6 have this property since their density functions are
discontinuous.

3.6. Example 3.4 implies that the Xi have ch.f. (sin t)/t, so (3.1f) implies that
X1 + · · ·+Xn has ch.f. (sin t/t)n. When n ≥ 2 this is integrable so (3.3) implies
that

f(x) =
1
2π

∫ ∞

−∞
(sin t/t)neitx dt

Since sin t and t are both odd, the quotient is even and we can simplify the last
integral to get the indicated formula.

3.7. X − Y has ch.f. ϕ · ϕ = |ϕ|2. The first equality follows by taking a = 0 in
Exercise 3.2. The second from Exercise 4.7 in Chapter 1.

3.8. Example 3.9 and (3.1f) imply that X1 + · · · + Xn has ch.f. exp(−n|t|),
so (3.1e) implies (X1 + · · · + Xn)/n has ch.f. exp(−|t|) and hence a Cauchy
distribution.

3.9. Xn has ch.f. ϕn(t) = exp(−σ2
nt

2/2). By taking log’s we see that ϕn(1) has
a limit if and only if σ2

n → σ2 ∈ [0,∞]. However σ2 = ∞ is ruled out by the
remark after (3.4).

3.10. Let ϕn(t) = EeitXn and ψn(t) = EeitYn . Since Xn ⇒ X∞ and Yn ⇒ Y∞,
we have ϕn(t) → ϕ∞(t) and ψn(t) → ψ∞(t). Xn + Yn has ch.f. ϕn(t)ψn(t)
which → ϕ∞(t)ψ∞(t). Being a product of ch.f., the limit is continuous at 0 and
the desired result follows from (ii) in (3.4).

3.11. (3.1f) implies Sn =
∑n

j=1Xj has ch.f. un(t) =
∏n

j=1 ϕj(t). As n → ∞,
Sn → S∞ a.s. So Exercise 2.9 implies Sn ⇒ S∞ and (i) of (3.4) implies
un → u∞, the ch.f. of S∞.

3.12. By Example 3.1 and (3.1e), cos(t/2m) is the ch.f. of a r.v. Xm with
P (Xm = 1/2m) = P (Xm = −1/2m) = 1/2, so Exercise 3.11 implies S∞ =∑∞

m=1Xm has ch.f.
∏∞

m=1 cos(t/2m). If we let Ym = (2mXm + 1)/2 then

S∞ =
∞∑

m=1

(
− 1

2m
+

2Ym

2m

)
= −1 + 2

∞∑

m=1

Ym/2m

The Ym are i.i.d. with P (Ym = 0) = P (Ym = 1) = 1/2 so thinking about binary
digits of a point chosen at random from (0, 1), we see

∑∞
m=1 Ym/2m is uniform

on (0, 1). Thus S∞ is uniform on (−1, 1) and has ch.f. sin t/t by Example 3.4.



Section 2.3 Characteristic Functions 33

3.13. A random variable with P (X = 0) = P (X = a) = 1/2 has ch.f. (1+eita)/2
so Exercise 3.11 implies X has ch.f.

ϕ(t) =
∞∏

j=1

(
1 + eit2·3−j

2

)

ϕ(3kπ) =
∞∏

j=1

(
1 + ei2π·3k−j

2

)
=

∞∏

m=1

(
1 + ei2π·3−m

2

)
= ϕ(π)

3.14. We prove the result by induction on n by checking the conditions of (9.1)
in the appendix. To make the notation agree we write

ϕ(n)(x) =
∫

(is)neixsµ(ds)

so f(x, s) = (is)neixs. Since |(is)neixs| = |s|n, E|X |n < ∞ then (i) holds.
Clearly, (ii) ∂f/∂x = (is)n+1eixs is a continuous function of x. The dominated
converence theorem implies

x→
∫

(is)n+1eixsµ(ds)

is a continuous function so (iii) holds. Finally,

∫ ∫ δ

−δ

|∂f/∂x(y + θ, s)| dθ µ(ds) =
∫ δ

−δ

E|X |n+1 dθ <∞

so (iv) holds and the desired result follows from (9.1) in the Appendix.

3.15. ϕ(t) = e−t2/2 =
∑∞

n=0(−1)nt2n/(2nn!). In this form it is easy to see that
ϕ(2n)(0) = (−1)n(2n)!/(2nn!). The deisred result now follows by observing that
E|X |n <∞ for all n and using the previous exercise.

3.16. (i) Let Xi be a r.v. with ch.f. ϕi. (3.1d) and (3.7) with n = 0 imply

|ϕi(t+ h) − ϕi(t)| ≤ E|eihXi − 1| ≤ Emin(h|Xi|, 2)

≤ E(h|Xi|; |Xi| ≤ h−1/2) + 2P (|Xi| > h−1/2)

The first expected value is ≤ h1/2, the second term goes to 0 as h → 0 by
tightness.
(ii) Without loss of generality we can assume the compact set is [−K,K]. Let
ε > 0 and pick δ > 0 so that if |h| < δ then |ϕi(t + h) − ϕi(t)| < ε for all i.
Let m > 1/δ be an integer. Since ϕn → ϕ∞ pointwise we can find N large
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enough so that if n ≥ N then |ϕn(k/m)−ϕ∞(k/m)| < ε for −Km ≤ k ≤ Km.
Combining the two estimates shows that if n ≥ N then |ϕn(t) − ϕ∞(t)| < 2ε
for t ∈ [−K,K].
(iii) Xn = 1/n has ch.f. eit/n that converges to 1 pointwise but not uniformly.

3.17. (i) E exp(itSn/n) = ϕ(t/n)n. If ϕ′(0) = ia then n(ϕ(t/n) − 1) → iat as
n → ∞ so ϕ(t/n)n → eiat the ch.f. of a pointmass at a, so Sn/n ⇒ a and it
follows from Exercise 2.9 that Sn/n→ a in probability.
(ii) Conversely if ϕ(t/n)n → eiat taking logarithms shows n logϕ(t/n) → iat
and since log z is differentiable at z = 1 in the complex plane it follows that
n(ϕ(t/n) − 1) → iat.

3.18. Following the hint and recalling cos is even we get

|y| =
∫ ∞

0

2(1 − cos yt)
πt2

dt

Now integrate dF (y) on both sides and use Fubini’s theorem on the right to get
the desired identity since Reϕ(t) =

∫
cos(yt) dF (y).

3.19. Since ϕ(−t) = ϕ(t), the hypothesis of (3.9) holds and it follows that
EX2 <∞. Using (3.8) now it follows that ϕ(t) = 1 + iµt− t2σ2/2 + o(t2) and
we have EX = 0 and E|X |2 = −2c. If ϕ(t) = 1 + o(t2) then c = 0 and X ≡ 0

3.20. (3.4) shows that Yn ⇒ 0 implies ϕn(t) → 1 for all t. Conversely if
ϕn(t) → 1 for |t| < δ then it follows from (3.5) that the sequence Yn is tight.
Part (i) of (3.4) implies that any subsequential limit has a ch.f. that is = 1 on
(−δ, δ) and hence by the previous exercise must be ≡ 1. We have shown now
that any subsequence has a further subsequence that ⇒ 0 so we have Yn ⇒ 0
by the last paragraph of the proof of (3.4).

3.21. If Sn converges in distribution then ϕn(t) = E exp(itSn) → ϕ(t) which is
a ch.f. and hence has |ϕ(t) − 1| < 1/2 for t ∈ [−δ, δ]. If m < n let

ϕm,n(t) = E exp(it(Sn − Sm)) = ϕn(t)/ϕm(t)

when ϕm(t) 6= 0. Combining our results we see that if m,n→ ∞ then ϕm,n → 1
for t ∈ [−δ, δ]. Using the previous exercise now we can conclude that if m,n→
∞ then Sn − Sm → 0 in probability. Using Exercise 6.4 in Chapter 1 now we
can conclude that there is a random variable S∞ with Sn → S∞ in probability.

3.22. By Polya’s criterion, (3.10), it suffices to show that ϕ(t) = exp(−tα) is
convex on (0,∞). To do this we note

ϕ′(t) = −αtα−1 exp(−tα)

ϕ′′(t) = (α2t2α−2 − α(α− 1)tα−2) exp(−tα)
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which is > 0 since α ≤ 1.

3.23. (3.1f) implies that X1 + · · · +Xn has ch.f. exp(−n|t|α), so (3.1e) implies
(X1 + · · · +Xn)/n1/α has ch.f. exp(−|t|α).

3.24. Let ϕ2(t) = ϕ1(t) on A, linear on each open interval that makes up Ac,
and continuous. ϕ2 is convex on (0,∞) and by Polya’s criterion must be a ch.f.
Since e−|t| is strictly convex we have {t : ϕ(t) = ϕ1(t)} = A.

3.25. Let ϕ0(t) = (1−|t|)+ and ϕ1(t) be periodic with period 2 and = ϕ0(t) on
[−1, 1]. If X,Y, Z are independent with X and Y having ch.f. ϕ0 and Z having
ch.f. ϕ1 then X + Y and X + Z both have ch.f. ϕ2

0.

3.26. Let ϕX and ϕY be the ch.f. of X and Y . Let δ > 0 be such that ϕX(t) 6= 0
for t ∈ [−δ, δ]. If X + Y and X have the same distibution then ϕX (t)ϕY (t) =
ϕX(t) so ϕY (t) = 1 for t ∈ [−δ, δ] and hence must be ≡ 1 by Exercise 3.19.

3.27. νk ≤ E|X |k ≤ λk. Conversely if ε > 0 then P (|X | > λ− ε) > 0 so

νk = E|X |k ≥ (λ− ε)kP (|X | ≥ λ− ε)

and lim infk→∞ ν
1/k
k ≥ λ− ε.

3.28. Since Γ(x) is bounded for x ∈ [1, 2] the identity quoted implies that
Γ(x) ≈ [x]! where f(x) ≈ g(x) means 0 < c ≤ f(x)/g(x) ≤ C < ∞ for all
x ≥ 1. Stirling’s formula implies

n! ∼ (n/e)n
√

2πn

where as usual an ∼ bn means an/bn → 1 as n→ ∞. Combining this with the
previous result and recalling (np)1/n → 1 shows

Γ((n+ α+ 1)/λ)1/n ∼
(
n+ α+ 1

λe

)(n+α+1)/λn

∼ Cn
1
λ

from which the desired result follows easily.

2.4. Central Limit Theorems

4.1. The mean number of sixes is 180/6 = 30 and the standard deviation is

√
(180/6)(5/6) = 5
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so we have

P (S180 ≤ 24.5) = P

(
S180 − 30

5
≤

−5.5
5

)

≈ P (χ ≤ −1.1) = 1 − 0.8643 = 0.1357

4.2. (a) Exercise 6.5 in Chapter 1 implies

P (Sn/
√
n ≥ K i.o.) ≥ lim sup

n→∞
P (Sn/

√
n ≥ K) > 0

so Kolmogorov’s 0-1 law implies P (Sn/
√
n ≥ K i.o.) = 1.

(b) If Sn/
√
n→ Z in probability then

|Sm!/
√
m! − S(m+1)!/

√
(m+ 1)!| → 0 in probability

On the other hand, the independence of Sm! and S(m+1)! − Sm! imply

P

(
1 <

Sm!√
m!

< 2,
S(m+1)! − Sm!√

(m+ 1)!
< −3

)
→ P (1 < χ < 2)P (χ < −3) > 0

so lim infm→∞ P (Sm!/
√
m! > 1, S(m+1)!/

√
(m+ 1)! < −1) > 0 a contradiction.

4.3. Since Ym = Um + Vm the first inequality is obvious. The second follows
from symmetry. To prove the third we note that

P

(
n∑

m=1

Um ≥ K
√
n

)
→ P (χ ≥ K/

√
var(Ui))

If the truncation level is chosen large then var(Ui) is large and the right hand
side > 2/5, so the third inequality holds for large n.

4.4. Intuitively, since (2x1/2)′ = x−1/2 and Sn/n→ 1 in probability

2(
√
Sn −

√
n) =

∫ Sn

n

dx

x1/2
≈ Sn − n√

n
⇒ σχ

To make the last calulation rigorous note that when |Sn − n| ≤ n2/3 (an event
with probability → 1)

∣∣∣∣∣

∫ Sn

n

dx

x1/2
− Sn − n√

n

∣∣∣∣∣ =
∣∣∣∣∣

∫ Sn

n

1
x1/2

− 1√
n
dx

∣∣∣∣∣

≤ n2/3

(
1

(n− n2/3)1/2
− 1
n1/2

)

= n2/3

∫ n

n−n2/3

dx

2x3/2
≤

n4/3

2(n− n2/3)3/2
→ 0
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as n→ ∞.

4.5. The weak law of large numbers implies
∑n

m=1X
2
m/nσ

2 → 1. y−1/2 is
continuous at 1, so (2.3) implies

(
σ2n

/
n∑

m=1

X2
m

)1/2

→ 1 in probability

and Exercise 2.11 implies

∑n
m=1Xm

σ
√
n

(
σ2n∑n

m=1X
2
m

)1/2

⇒ χ · 1

4.6. Kolmogorov’s inequality ((7.2) in Chapter 1) implies

P

(
sup

(1−ε)an≤m≤(1+ε)an

|Sm − S[(1−ε)an]| > δσ
√
an

)
≤ 2ε/δ2

If Xn = SNn/σ
√
an and Yn = San/σ

√
an then it follows that

lim sup
n→∞

P (|Xn − Yn| > δ) ≤ 2ε/δ2

Since this holds for all ε we have P (|Xn − Yn| > δ) → 0 for each δ > 0, i.e.,
Xn−Yn → 0 in probability. The desired conclusion follows from the converging
together lemma Exercise 2.10.

4.7. Nt/(t/µ) → 1 by (7.3) in Chapter 1, so by the last exercise

(SNt − µNt)/(σ2t/µ)1/2 ⇒ χ

In view of Exercise 2.10 we can complete the proof now by showing

(SNt − t)/
√
t→ 0

To do this, we observe that EY 2
i <∞ implies

P

(
max

1≤m≤2t/µ
Ym > ε

√
t

)
≤ (2t/µ)P (Y1 > ε

√
t)

≤
2
µε2

E(Y 2
1 ;Y1 > ε

√
t) → 0

by the dominated convergence theorem. Since P (Nt + 1 ≤ 2t/µ) → 1 and
0 ≤ t− SNt ≤ YNt+1, the desired result follows from Exercise 2.10.
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4.8. Recall u = [t/µ]. Kolmogorov’s inequality implies

P (|Su+m − (Su +mµ)| > t2/5 for some m ∈ [−t3/5, t3/5]) ≤ 2 · σ
2t3/5

t4/5
→ 0

as t → ∞. When the event estimated in the last equation does not occur we
have

Dt +mµ− t2/5 ≤ Su+m − t ≤ Dt +mµ+ t2/5

when m ∈ [−t3/5, t3/5]. When

m = (−Dt + 2t2/5)/µ Su+m > t so Nt ≤ u−Dt/µ+ 2t2/5/µ

m = (−Dt − 2t2/5)/µ Su+m < t so Nt ≥ u−Dt/µ− 2t2/5/µ

The last two inequalities imply (recall u = [t/µ])

|Nt − (t−Dt)/µ|
t1/2

→ 0 in probability.

The central limit theorem implies Dt/σ
√
t/µ⇒ χ and the desired result follows

from Exercise 2.10.

4.9. Let Ym = 1 if Xm > 0 and Ym = −1 if Xm < 0. P (Xm 6= Ym) = m−2 so
the Borel Cantelli lemma implies P (Xm 6= Ym i.o.) = 0. The ordinary central
limit theorem implies Tn = Y1 + · · · + Yn has Tn/

√
n ⇒ χ, so the converging

together lemma, Exercise 2.10, implies Sn/
√
n⇒ χ.

4.10. Let Xn,m = (Xm−EXm)/
√

var(Sn). By definition, (i) in (4.5) holds with
σ2 = 1. Since |Xm −EXm| ≤ 2M , the sum in (ii) is 0 for large n. The desired
result follows from (4.5).

4.11. Let Xn,m = Xm/
√
n. By definition (i) in (4.5) holds with σ2 = 1. To

check (ii) we note that
n∑

m=1

E(X2
n,m; |Xn,m| > ε) = n−1

n∑

m=1

E(X2
m; |Xm| > ε

√
n)

≤ n−1(ε
√
n)−δ

n∑

m=1

E(|X |2+δ) ≤ C(ε
√
n)−δ → 0

The desired result now follows from (4.5).

4.12. Let Xn,m = (Xm−EXm)/αn. By definition (i) in (4.5) holds with σ2 = 1.
To check (ii) we note that

n∑

m=1

E(X2
n,m; |Xn,m| > ε) = α−2

n

n∑

m=1

E((Xm −EXm)2; |Xm −EXm| > εαn)

≤ ε−δα−(2+δ)
n

n∑

m=1

E(|Xm −EXm|2+δ) → 0
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The desired result now follows from (4.5).

4.13. (i) If β > 1 then
∑

j P (Xj 6= 0) <∞ so the Borel Cantelli lemma implies
P (Xj 6= 0 i.o.) = 0 and

∑
j Xj exists.

(ii) EX2
j = j2−β so var(Sn) ∼ n3−β/(3 − β). Let Xn,m = Xm/n

(3−β)/2. By
definition (i) in (4.5) holds with σ2 = 1/(3 − β). To check (ii) we note that
when β < 1, (3−β)/2 > 1 so eventually the sum in (ii) is 0. The desired result
now follows from (4.5).
(iii) When β = 1, E exp(itXj) = 1 − j−1(1 − cos(jt)). So

E exp(itSn/n) =
n∏

j=1

(
1 +

1
n

(j/n)−1{cos(jt/n) − 1}
)

(1 − cos(tx))/x is bounded for x ≤ 1 and the Riemann sums

n∑

j=1

1
n

(j/n)−1{cos(jt/n) − 1} →
∫ 1

0

x−1{cos(xt) − 1} dx

so the desired result follows from Exercise 1.1.

2.6. Poisson Convergence

6.1. (i) Clearly d(µ, ν) = d(ν, µ) and d(µ, ν) = 0 if and only if µ = ν. To check
the triangle inequality we note that the triangle inequality for real numbers
implies

|µ(x) − ν(x)| + |ν(x) − π(x)| ≥ |µ(x) − π(x)|

then sum over x.
(ii) One direction of the second result is trivial. We cannot have ‖µn − µ‖ → 0
unless µn(x) → µ(x) for each x. To prove the converse note that if µn(x) → µ(x)

∑

x

|µn(x) − µ(x)| = 2
∑

x

(µ(x) − µn(x))+ → 0

by the dominated convergence theorem.

6.2. (µ(x) − ν(x))+ ≤ P (X = x,X 6= Y ) so summing over x and noting that
the events on the right hand side are disjoint shows ‖µ − ν‖/2 ≤ P (XY ). To
prove the other direction note that

∑

x

µ(x) ∧ ν(x) =
∑

x

µ(x) − (µ(x) − ν(x))+ = 1 − ‖µ− ν‖/2
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Let Ix, x ∈ Z be disjoint subintervals of (0, 1−‖µ−ν‖/2) with length µ(x)∧ν(x).
SetX = Y = x on Ix. Let Jx, x ∈ Z, be disjoint subintervals of (1−‖µ−ν‖/2, 1)
with length (µ(x) − ν(x))+ and set X = x on Jx. Since

{µ(x) ∧ ν(x)} + (µ(x) − ν(x))+ = µ(x)

X has distribution µ. For Y , we similarly let Kx, x ∈ Z, be disjoint subintervals
of (1 − ‖µ− ν‖/2, 1) with length (ν(x) − µ(x))+ and set Y = x on Kx.

6.3. Let Xn,m = (τn
m − τn

m−1) − 1. The hypotheses of (6.7) hold with

pn,m =
m− 1
n

(
1 −

m− 1
n

)
εn,m =

(
m− 1
n

)2

for 1 ≤ m ≤ kn. The desired result follows from (6.7) since

max
1≤m≤kn

pn,m ≤ kn/n→ 0

kn∑

m=1

pn,m ∼ 1
n

kn∑

m=1

(m− 1) ∼ k2
n

2n
→ λ2

2

kn∑

m=1

εn,m =
1
n2

kn∑

m=1

(m− 1)2 ∼ k3
n

3n2
→ 0

6.4. For m ≥ 1, τn
m − τn

m−1 has a geometric distribution with p = 1− (m− 1)/n
and hence by Example 3.5 in Chapter 1 has mean 1/p = n/(n − m + 1) and
variance (1 − p)/p2 = n(m− 1)/(n−m+ 1)2.

µn,k =
k∑

m=1

n

n−m+ 1
=

n∑

j=n−k+1

n

j

∼ n

∫ n

n−k

dx

x
∼ −n ln(1 − a)

σ2
n,k =

k∑

m=1

n(m− 1)
(n−m+ 1)2

= n
n∑

j=n−k+1

n− j

j2

=
n∑

j=n−k+1

1 − j/n

(j/n)2
≈ n

∫ 1

1−a

1 − x

x2
dx

Let tn,m = τn
m − τn

m−1 and Xn,m = (tn,m − Etn,m)/
√
n. By design EXn,m = 0

and (i) in (4.5) holds. To check (ii) we note that if k/n ≤ b < 1 and Y is
geometric with parameter p = 1 − b

k∑

m=1

E(X2
n,m; |Xn,m| > ε) ≤ bnE((Y/

√
n)2;Y > ε

√
n) → 0
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by the dominated convergence theorem.

6.5. Iterating P (T > t+ s) = P (T > t)P (T > s) shows

P (T > ks) = P (T > s)k

Letting s → 0 and using P (T > 0) = 1 it follows that P (T > t) > 0 for all t.
Let e−λ = P (T > 1). Using

P (T > 21−n) = P (T > 2−n)2

and induction shows P (T > 2−n) = exp(−λ2−n). Then using the first relation-
ship in the proof

P (T > m2−n) = exp(−λm2−n)

Letting m2−n ↓ t, we have P (T > t) = exp(−λt).

6.6. (a) u(r + s) = P (Nr+s = 0) = P (Nr = 0, Nr+s −Nr = 0) = u(r)u(s) so
this follows from the previous exercise.
(b) If N(t) − N(t−) ≤ 1 for all t then for large n, ω 6∈ An. So An → ∅ and
P (An) → 0. Since P (An) = 1 − (1 − v(1/n))n we must have nv(1/n) → 0 i.e.,
(iv) holds.

6.7. We change variables v = r(t) where vi = ti/tn+1 for i ≤ n, vn+1 = tn+1.
The inverse function is

s(v) = (v1vn+1, . . . , vnvn+1, vn+1)

which has matrix of partial derivatives ∂si/∂vj given by



vn+1 0 . . . 0 v1
0 vn+1 . . . 0 v2
...

...
. . .

...
...

0 0 . . . vn+1 vn

0 0 . . . 0 1




The determinant of this matrix is vn
n+1 so if we let W = (V1, . . . , Vn+1) =

r(T1, . . . , Tn+1) the change of variables formula implies W has joint density

fW (v1, . . . , vn, vn+1) =

(
n∏

m=1

λe−λvn+1(vm−vm−1)

)
λe−λvn+1(1−vn)vn

n+1

To find the joint density of V = (V1, . . . , Vn) we simplify the preceding formula
and integrate out the last coordinate to get

fV (v1, . . . , vn) =
∫ ∞

0

λn+1vn
n+1e

−λvn+1 dvn+1 = n!
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for 0 < v1 < v2 . . . < vn < 1, which is the desired joint density.

6.8. As n→ ∞, Tn+1/n→ 1 almost surely, so Exercise 2.11 implies

nV n
k

d= nTk/Tn+1 ⇒ Tk

6.9. As n→ ∞, Tn+1/n→ 1 almost surely, so if ε > 0 and n is large

n−1
n∑

m=1

1{n(V n
m−V n

m−1)>x} ≥ n−1
n∑

m=1

1{Tm−Tm−1>x(1+ε)} → e−x(1+ε)

almost surely by the strong law of large numbers. A similar argument gives an
upper bound of exp(−x(1 − ε)) and the desired result follows.

6.10. Exercise 6.18 in Chapter 1 implies

(log n)−1 max
1≤m≤n+1

Tm − Tm−1 → 1

As n → ∞, Tn+1/n → 1 almost surely, so the desired result follows from
Exercise 2.11.

6.11. Properties of the exponential distribution imply

P

(
(n+ 1) min

1≤m≤n+1
Tm − Tm−1 > x

)
= e−x

As n → ∞, (n + 1)Tn+1/n
2 → 1 almost surely, so the desired result folllows

from Exercise 2.11.

6.12. Conditioning on N = m, we see that if m0, . . . ,mk add up to m then

P (N0 = m0, . . . , Nk = mk) =
m!

m0! · · ·mk!
· pm0

0 · · · pmk

k · e−λλ
m

m!

=
k∏

j=0

e−λpj
(λpj)mj

mj !

6.13. If the number of balls has a Poisson distribution with mean s = n logn−
n(logµ) then the number of balls in box i, Ni, are independent with mean
s/n = log(n/µ) and hence they are vacant with probability exp(−s/n) = µ/n.
Letting Xn,i = 1 if the ith box is vacant, 0 otherwise and using (6.1) it follows
that the number of vacant sites converges to a Poisson with mean µ.
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To prove the result for a fixed number of balls, we note that the central limit
theorem implies

P (Poisson(s1) < r < Poisson(s2)) → 1

Since the number of vacant boxes is decreased when the number of balls in-
creases the desired result follows.

2.7. Stable Laws

7.1. log(tx)/ log t = (log t+ log x)/ log t→ 1 as t→ ∞. However, (tx)ε/tε = xε.

7.2. In the proof we showed

E exp(itŜn(ε)/an) → exp
(∫ ∞

ε

(eitx − 1)θαx−(α+1) dx

+
∫ −ε

−∞
(eitx − 1)(1 − θ)α|x|−(α+1)dx

)

Since eitx − 1 ∼ itx as x → 0, if we assume α < 1 the right-hand side has a
limit when ε→ 0. Using (7.10) and (7.6) the desired result follows.

7.3. If we let Zm = sgn (Ym)/|Ym|p, which are i.i.d., then for x ≥ 1

P (|Zm| > x) = P (|Ym| ≤ x−1/p) = x−1/p

(i) When p < 1/2, EZ2
m <∞ and the central limit theorem (4.1) implies

n−1/2
n∑

m=1

Zm ⇒ cχ

(ii) When p = 1/2 the Zm have the distribution considered in Example 4.8 so

(n logn)−1/2
n∑

m=1

Zm ⇒ χ

7.4. Let X1, X2, . . . be i.i.d. with P (Xi > x) = x−α for x ≥ 1, and let Sn =
X1 + · · · + Xn. (7.7) and remarks after (7.13) imply that (Sn − bn)/an ⇒ Y
where Y has a stable law with κ = 1. When α < 1 we can take bn = 0 so
Y ≥ 0.
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7.5. (i) Using (3.5)

P (|X | > 2/u) ≤ u−1

∫ u

−u

(1 − ϕ(t)) dt

Using the fact that 1 − ϕ(u) ∼ C|u|α it follows that the right hand side is
∼ C ′|u|α, and hence P (|X | > x) ≤ C ′′|x|−α for x ≥ 1. From the last inequality
it follows that if 0 < p < α

E|X |p =
∫ ∞

0

pxp−1P (|X | > x) dx

≤
∫ 1

0

pxp−1 dx+ pC ′′
∫ ∞

1

xp−α−1 dx <∞

(ii) Let X1, X2, . . . be i.i.d. with P (Xi > x) = P (Xi < −x) = x−α/2 for x ≥ 1,
and let Sn = X1 + · · · +Xn. From the convergence of Xn to a Poisson process
we have

|{m ≤ n : Xm > xn1/α}| ⇒ Poisson(x−α/2)

|{m ≤ n : Xm < −n1/α}| ⇒ Poisson(1/2)

Now Sn ≥ xn1/α if (i) there is at least one Xm > xn1/α with m ≤ n, (ii) there
is no Xm < −n1/α with m ≤ n, and (iii) S̄n(1) ≥ 0 so we have

lim inf
n→∞

P (Sn ≥ xn1/α) ≥ x−α

2
e−x−α/2 · e−1/2 · 1

2

To see the inequality note that P (i|ii) ≥ P (i) and even if we condition on the
number of |Xm| > n1/α with m ≤ n the distribution of S̄n(1) is symmetric.

7.6. (i) Let X1, X2, . . . be i.i.d. with P (Xi > x) = θx−α/2, P (Xi < −x) =
(1 − θ)x−α for x ≥ 1, and let Sn = X1 + · · · + Xn. (7.7) implies that (Sn −
bn)/n1/α ⇒ Y and (7.15) implies αk = lim ank/an = k1/α. (ii) When α < 1 we
can take bn = 0 so βk = limn→∞(kbn − bnk)/an = 0.

7.7. Let Y1, Y2, . . . be i.i.d. with the same distribution as Y . The previous
exercise implies n1/αY

d= Y1 + · · · + Yn so if ψ(λ) = E exp(−λY ) then

ψ(λ)n = ψ(n1/αλ)

Taking nth roots of each side we have

ψ(λ) = ψ(n1/αλ)1/n
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Setting n = m and replacing λ by λm−1/α in the first equality, and then using
the second gives

ψ(λ) = ψ(m−1/αλ)m = ψ((m/n)−1/αλ)m/n

Letting e−c = ψ(1) and m/n→ λα the desired result follows.

7.8. (i) Using the formula for the ch.f. of X and the previous exercise we have

E exp(it(XY 1/α)) = E exp(−c|t|αY ) = exp(−c′|t|αβ)

(ii) |W2| has density 2(2π)−1/2e−x2/2 and f(x) = 1/x2 is decreasing on (0,∞)
so using Exercise 1.10 from Chapter 1, and noting g(y) = 1/

√
y, g′(y) =

−(1/2)y−3/2 we see that Y = 1/|W2|2 has density function

2√
2π
e−1/2y · 1

2
y−3/2

as claimed. Taking X = W1 and Y = 1/W 2
2 and using (i) we see that W1/W2 =

XY 1/2 has a symmetric stable distribution with index 2 · (1/2).

2.8. Infinitely Divisible Distributions

8.1. Suppose Z = gamma(α, λ). If Xn,1, . . . , Xn,n are gamma(α/n, λ) and in-
dependent then Example 4.3 in Chapter 1 implies Xn,1 + · · · +Xn,n =d Z.

8.2. Suppose Z has support in [−M,M ]. If Xn,1, . . . , Xn,n are independent and
Z = Xn,1 + · · ·+Xn,n then Xn,1, . . . , Xn,n must have support in [−M/n,M/n].
So var(Xn,i) ≤ EX2

n,i ≤ M2/n2 and var(Z) ≤ M2/n. Letting n → ∞ we have
var(Z) = 0.

8.3. Suppose Z = Xn,1 + · · ·+Xn,n where the Xn,i are i.i.d. If ϕ is the ch.f. of
Z and ϕn is the ch.f. of Xn,i then ϕn

n(t) = ϕ(t). Since ϕ(t) is continuous at 0
we can pick a δ > 0 so that ϕ(t) 6= 0 for t ∈ [−δ, δ]. We have supposed ϕ is
real so taking nth roots it follows that ϕn(t) → 1 for t ∈ [−δ, δ]. Using Exercise
3.20 now we conclude that Xn,1 ⇒ 0, and (i) of (3.4) implies ϕn(t) → 1 for all
t. If ϕ(t0) = 0 for some t0 this is inconsistent with ϕn

n(t0) = ϕ(t0) so ϕ cannot
vanish.

8.4. Comparing the proof of (7.7) with the verbal description above the problem
statement we see that the Lévy measure has density 1/2|x| for x ∈ [−1, 1], 0
otherwise.
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2.9. Limit Theorems in Rd

9.1.

Fi(x) = P (Xi ≤ x)
lim

n→∞
P (X1 ≤ n, . . . , Xi−1 ≤ n,Xi ≤ x,Xi+1 ≤ n, . . . , Xd ≤ n)

lim
n→∞

F (n, . . . , n, x, n, . . . , n)

where the x is in the ith place and n’s in the others.

9.2. It is clear that F has properties (ii) and (iii). To check (iv) let G(x) =∏d
i=1 Fi(xi) andH(x) =

∏d
i=1 Fi(xi)(1−Fi(xi)). Using the notation introduced

just before (iv)

∑

v

sgn (v)G(v) =
d∏

i=1

Fi(bi) − Fi(ai)

∑

v

sgn (v)H(v) =
d∏

i=1

{Fi(bi)(1 − Fi(bi) − Fi(ai)(1 − Fi(ai)}

To show
∑

v sgn (v)(G(v) + αH(v)) ≥ 0 we note

Fi(bi)(1 − Fi(bi)) − Fi(ai)(1 − Fi(ai))
= {Fi(bi) − Fi(ai)}(1 − Fi(ai))

+ Fi(ai){(1 − Fi(bi)) − (1 − Fi(ai))}
= {1 − Fi(bi) − Fi(ai)}(Fi(bi) − Fi(ai))

and |1 − Fi(bi) − Fi(ai)| ≤ 1.

9.3. Each partial derivative kills one intergal.

9.4. If K is closed, H = {x : xi ∈ K} is closed. So

lim sup
n→∞

P (Xn,i ∈ K) = lim sup
n→∞

P (Xn ∈ H) ≤ P (X ∈ H) = P (Xi ∈ K)

9.5. If X has ch.f. ϕ then the vector Y = (X, . . . , X) has ch.f.

ψ(t) = E exp


i
∑

j

tjX


 = ϕ


∑

j

tj
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9.6. If the random variables are independent this follows from (3.1f). For the
converse we note that the inversion formula implies that the joint distribution
of the Xi is that of independent random variables.

9.7. Clearly, independence implies Γij = 0 for i 6= j. To prove the converse note
that Γij = 0 for i 6= j implies

ϕX1,...,Xd
(t) =

d∏

j=1

ϕXj (tj)

and then use Exercise 9.6.

9.8. If (X1, . . . , Xd) has a multivariate normal distribution then

ϕc1X1+···+cdXd
(t) = E exp


i
∑

j

tcjXj




= exp


−t

∑

i

ciθi −
∑

i

∑

j

t2ciΓijcj/2




This is the ch.f. of a normal distribution with mean cθt and variance cΓct. To
prove the converse note that the assumption about the distribution of linear
combinations implies

E exp


i
∑

j

cjXj


 = exp


−

∑

i

ciθi −
∑

i

∑

j

ciΓijcj/2




so the vector has the right ch.f.



3 Random Walks

3.1. Stopping Times

1.1. P (Xi = 0) < 1 rules out (i). By symmetry if (ii) or (iii) holds then the
other one does as well, so (iv) is the only possibility.

1.2. The central limit theorem implies Sn/
√
n⇒ σχ, where χ has the standard

normal distribution. Exercise 6.5 from Chapter 1 implies

P (Sn/
√
n ≥ 1 i.o.) ≥ lim supP (Sn/

√
n ≥ 1) > 0

So Kolmogorov’s 0-1 law implies this probability is 1. This shows lim supSn =
∞ with probability 1. A similar argument shows lim inf Sn = −∞ with proba-
bility one.

1.3. {S ∧T = n} = {S = n, T ≥ n}∪ {S ≥ n, T = n}. The right-hand side is in
Fn since {S = n} ∈ Fn and {T ≥ n} = {T ≤ n−1}c ∈ Fn−1, etc. For the other
result note that {S ∨ T = n} = {S = n, T ≤ n} ∪ {S ≤ n, T = n}. The right-
hand side is in Fn since {S = n} ∈ Fn and {T ≤ n} = ∪n

m=1{T = m} ∈ Fn,
etc.

1.4. {S + T = n} = ∪n−1
m=1{S = m,T = n−m} ∈ Fn so the result is true.

1.5. {YN ∈ B} ∩ {N = n} = {Yn ∈ B} ∩ {N = n} ∈ Fn, so YN ∈ FN .

1.6. If A ∈ FM then

A ∩ {N = n} = ∪n
m=1A ∩ {M = m} ∩ {N = n}

Since A ∈ FM , A ∩ {M = m} ∈ Fm ⊂ Fn. Thus A ∩ {N = n} ∈ Fn and
A ∈ FN .

1.7. Dividing the space into A and Ac then breaking things down according to
the value of L

{N = n} = ({L = n} ∩ A) ∪ ∪n
m=1 ({L = m} ∩ {M = n} ∩ Ac)
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{L = m} ∩ Ac in Fm whenever A ∈ Fm by the definition of FL. Combining
this with {M = n} ∈ Fn proves the desired result.

1.8. (i) (1.4) implies that P (αk < ∞) = P (α < ∞)k so P (αk < ∞) → 0
if P (α < ∞) < 1. (ii) (1.5) implies that ξk = Sαk

− Sαk−1 are i.i.d., with
Eξk ∈ (0,∞] so (7.2) in Chapter 1 implies Sαk

/k → Eξ1 > 0 and supn Sn = ∞.

1.9. By the previous exercise we get the following correspondence

P (α <∞) < 1 P (β <∞) < 1 supSn <∞ inf Sn > −∞
P (α <∞) = 1 P (β <∞) < 1 supSn = ∞ inf Sn > −∞
P (α <∞) < 1 P (β <∞) = 1 supSn <∞ inf Sn = −∞
P (α <∞) < 1 P (β <∞) < 1 supSn = ∞ inf Sn = −∞

Using (1.2) now we see that the four lines correspond to (i)–(iv).

1.10. (i) An
m corresponds to breaking things down according to the location of

the last time the minimum is attained so the An
m are a partition of Ω. To get

the second equality we note that

An
m = {Xm ≤ 0, Xm +Xm−1 ≤ 0, . . . Xm + · · · +X1 ≤ 0

Xm+1 > 0, Xm+1 +Xm+2 > 0, . . . , Xm+1 + · · · +Xm+n > 0}

(ii) Fatou’s lemma implies

1 ≥ P (β̄ = ∞)
∞∑

k=0

P (α > k) = P (β̄ = ∞)Eα

When P (β̄ = ∞) > 0 the last inequality implies that Eα < ∞ and the desired
result follows from the dominated convergence theorem. It remains to prove
that if P (β̄ = ∞) = 0 then Eα = ∞. If P (α = ∞) > 0 this is true so suppose
P (α = ∞) = 0. In this case for any fixed i P (α > n− i) → 0 so for any N

1 ≤ lim inf
n→∞

n−N∑

k=0

P (α > k)P (β̄ > n− k)

≤ P (β̄ > N) lim inf
n→∞

n−N∑

k=0

P (α > k)

so Eα ≥ 1/P (β̄ > N) and since N is arbitrary the desired result follows.

1.11. (i) If P (β̄ = ∞) > 0 then Eα < ∞. In the proof of (ii) in Exercise 1.8
we observed that Sα(k)/k → Eξ1 > 0. As k → ∞, α(k)/k → Eα so we have
lim supSn/n > 0 contradicting the strong law of large numbers.
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(ii) If P (β = ∞) > 0 and P (Xi > 0) > 0 then P (β̄ = ∞) > 0. (Take a sample
path with β = ∞ and add an initial random variable that is > 0.) Thus if
P (β̄ = ∞) = 0, EXi = 0 and P (Xi = 0) < 1 then P (β = ∞) = 0. Similarly,
P (α = ∞) = 0. Now use Exercise 1.9.

1.12. Changing variables yk = x1 + · · · + xk we have

P (T > n) =
∫ 1

0

∫ 1−x1

0

· · ·
∫ 1−x1···−xn−1

0

dxn · · · dx2 dx1

=
∫

· · ·
∫

0<y1<...<yn≤1

dyn · · · dy1 = 1/n!

since the region is 1/n! of the volume of [0, 1]. From this it follows that ET =∑∞
n=0 P (T > n) = e and Wald’s equation implies EST = ETEXi = e/2.

1.13. (i) The strong law implies Sn → ∞ so by Exercise 1.9 we must have
P (α < ∞) = 1 and P (β < ∞) < 1. (ii) This follows from (1.4). (iii) Wald’s
equation implies ESα∧n = E(α ∧ n)EX1. The monotone convergence theorem
implies that E(α ∧ n) ↑ Eα. P (α < ∞) = 1 implies Sα∧n → Sα = 1. (ii) and
the dominated convergence theorem imply ESα∧n → 1.

1.14. (i) T has a geometric distribution with success probability p so ET = 1/p.
The first Xn that is larger than a has the distribution of X1 conditioned on
X1 > a so

EYT = a+E(X − a)+/p− c/p

(ii) If a = α the last expression reduces to α. Clearly

max
m≤n

Xm ≤ α+
n∑

m=1

(Xm − α)+

for n ≥ 1 subtracting cn gives the inequality in the exercise. Wald’s equation
implies that if Eτ <∞ then

E

τ∑

m=1

(Xm − α)+ = EτE(X1 − α)+

Using the definition of c now we have EYτ ≤ α.

1.15. using the definitions and then taking expected value

S2
T∧n = S2

T∧(n−1) + (2XnSn−1 +X2
n)1(T≥n)

ES2
T∧n = ES2

T∧(n−1) + σ2P (T ≥ n)
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since EXn = 0 and Xn is independent of Sn−1 and 1(T≥n) ∈ Fn−1. [The
expectation of Sn−1Xn exists since both random variables are in L2.] From the
last equality and induction we get

ES2
T∧n = σ2

n∑

m=1

P (T ≥ m)

E(ST∧n − ST∧m)2 = σ2
n∑

k=m+1

P (T ≥ n)

The second equality follows from the first applied to Xm+1, Xm+2, . . .. The
second equality implies that ST∧n is a Cauchy sequence in L2, so letting n→ ∞
in the first it follows that ES2

T = σ2ET .

3.4. Renewal Theory

4.1. Let X̄i = Xi ∧ t, T̄k = X̄1 + · · · + X̄k, N̄t = inf{k : T̄k > t}. Now X̄i = Xi

unless Xi > t and Xi > t implies Nt ≤ i. Now

t ≤ T̄N̄t
≤ 2t

the optional stopping theorem implies

ET̄N̄t
= E(Xi ∧ t)EN̄t

and the desired result follows.

4.2. Pick δ > 0 so that P (ξi > δ) = ε > 0. Let ξ′k = 0 if ξk ≤ δ and = δ if
ξk > δ. Let T ′

n = ξ′1 + · · · + ξ′n and Mt = inf{n : T ′
n > t}. Clearly T ′

n ≤ Tn and
so Nt ≤Mt. Mt is the sum of kt = [t/δ]+1 geometrics with success probability
ε so by Example 3.5 in Chapter 1

EMt = kt/ε

var(Mt) = kt(1 − ε)/ε2

E(Mt)2 = var(Mt) + (EMt)2 ≤ C(1 + t2)

4.3. The lack of memory property of the exponential implies that the times
between customers who are served is a sum of a service time with mean µ and
a waiting time that is exponential with mean 1. (4.1) implies that the number
of customers served up to time t, Mt satisfies Mt/t→ 1/(1 + µ). (4.1) applied
to the Poisson process implies Nt/t→ 1 a.s. so Mt/Nt → 1/(1 + µ) a.s.
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4.4. Clearly if Iδ = ∞ for all δ > 0, h cannot be directly Riemann integrable.
Suppose now that Iδ <∞ for some δ > 0. Let

hδ(x) = sup
y∈(x−δ,x+δ)

h(y)

aδ
k = sup

y∈[kδ,(k+1)δ)

h(y)

If x ∈ [mδ, (m+ 1)δ) then

hδ(x) ≤ aδ
m−1 + aδ

m + aδ
m+1

so integrating over [mδ, (m+ 1)δ) and summing over m gives
∫ ∞

0

hδ(x) dx ≤ 3Iδ <∞

Now Iη =
∫∞
0
aη
[x/η] dx, a

η
[x/η] → h(x) as η → 0, and if η < δ then aη

[x/η] ≤ hδ(x)
so the dominated convergence theorem implies

Iη →
∫ ∞

0

h(x) dx

A similar argument shows Iη →
∫∞
0
h(x) dx and the proof is complete.

4.5. The equation comes from considering the time of the first renewal. It is easy
to see using (4.10) that h(t) = (1 − F (t))1(x,∞) is directly Riemann integrable
whenever µ <∞ so (4.9) implies

H(t) → 1
µ

∫ ∞

0

(1 − F (s))1(x,∞)(s) ds

4.6. In this case the equation is

H(t) = e−λt1(x,∞)(t) +
∫ t

0

H(t− s)λe−λs ds

and one can check by integrating that the solution is

H(t) =
{

0 if t < x
e−λx if t ≥ x

4.7. By considering the time of the first renewal

H(t) = (1 − F (t+ y))1(x,∞) +
∫ t

0

H(t− s) dF (s)
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It is easy to see using (4.10) that h(t) = 1−F (t+ y)1(x,∞) is directly Riemann
integrable whenever µ <∞ so (4.9) implies

H(t) → 1
µ

∫ ∞

0

(1 − F (y + s))1(x,∞)(s) ds

4.8. By considering ξ1 and η1

H(t) = 1 − F1(t) +
∫ t

0

H(t− s) dF (s)

It follows from (4.10) that h(t) = 1 − F1(t) is directly Riemann integrable
whenever µ1 <∞ so (4.9) implies

H(t) → 1
µ

∫ ∞

0

1 − F1(s) ds =
µ1

µ1 + µ2

4.9. By considering the times of the first two renewals we see

H(t) = 1 − F (t) +
∫ t

0

H(t− s) dF 2∗(s)

Taking µ1 = µ2 = µ in the previous exercise gives the desired result.

4.10. V = F + V ∗ F so differentiating gives the desired equality. Using (4.9)
now gives

v(t) → 1
µ

∫ ∞

0

f(t) dt =
1
µ

4.11. (i) Let Un = 1 if (Xn, . . . , Xn+k−1) = (i1, . . . , tk). Applying the strong
law to the i.i.d. sequences {Ui+jk , j ≥ 1} for i = 0, 1, . . . , k − 1 shows that
Nn =

∑n
m=1 Um/n→ 2−k. Since ENn/n→ 1/Et2, it follows that Et2 = 2k.

(ii) For HH we get Et1 = 4 since

Et1 = 1/4 + 1/4(Et1 + 2) + 1/2(Et1 + 1) (1/4)Et1 = 1

For HT we note that if we get heads the first time then we have what we want
the first time T appears so

Et1 = P (H) · 2 + P (T ) · (Et1 + 1) (1/2)Et1 = 3/2

and Et1 = 3



4 Martingales

4.1. Conditional Expectation

1.1. Let Yi = E(Xi|F). If A ⊂ B and A ∈ F then
∫

A

Y1 dP =
∫

A

X1 dP =
∫

A

X2 dP =
∫

A

Y2 dP

If A = {Y1 − Y2 ≥ ε > 0} ∩ B then repeating the proof of uniqueness shows
P (A) = 0 and Y1 = Y2 a.s. on B.

1.2. The defintion of conditional expectation implies
∫

B

P (A|G) dP =
∫

B

1A dP = P (A ∩ B)

Taking B = G and B = Ω it follows that
∫

G
P (A|G) dP∫
P (A|G) dP

=
P (G ∩ A)
P (A)

= P (G|A)

1.3. a21(|X|≥a) ≤ X2 so using (1.1b) and (1.1a) gives the desired result.

1.4. (1.1b) implies YM ≡ E(XM |F) ↑ a limit Y . If A ∈ F then the defintion of
conditional expectation implies

∫

A

X ∧M dP =
∫

A

YM dP

Using the monotone convergence theorem now gives
∫

A

X dP =
∫

A

Y dP
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1.5. (1.1b) and (1.1a) imply

0 ≤ E((X + θY )2|G) = E(X2|G)θ2 + 2E(XY |G)θ +E(Y 2|G)

Now a quadratic aθ2 + bθ + c which is nonnegative at all rational θ must have
b2 − 4ac ≤ 0 and the desired result follows.

1.6. Let F1 = σ({a}) and F2 = σ({c}). Take X(b) = 1, X(a) = X(c) = 0. In
this case

a b c
E(X |F1) 0 1/2 1/2

E(E(X |F1)|F2) 1/4 1/4 1/2

To see this is 6= E(E(X |F2)|F1), we can note it is not ∈ F1.

1.7. (i) implies (ii) follows from Example 1.2. The failure of the converse follows
from Example 4.2 in Chapter 1.
To prove (ii) implies (iii) we note that (1.1f), (1.3), and the assumption

E(XY ) = EE(XY |X) = E(XE(Y |X)) = E(XEY ) = EXEY

To see that the converse fails consider

X/Y 1 −1
1 1/4 0
0 0 1/2
−1 1/4 0

where EX = EY = EXY = 0 but E(Y |X) = −1 + 2X2.

1.8. Let Z = E(X |F) − E(X |G) ∈ F and steal an equation from the proof of
(1.4)

E{X −E(X |F) − Z}2 = E{X −E(X |F)}2 +EZ2

Inserting the definition of Z now gives the desired result.

1.9. var(X |F) = E(X2|F) −E(X |F)2 and E(E(X2|F)) = EX2 we have

E(var(X |F)) = EX2 −E(E(X |F)2)

Since E(E(X |F)) = EX we have

var(E(X |F)) = E(E(X |F)2) − (EX)2

Adding the two equations gives the desired result.
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1.10. Let F = σ(N). Our first step is to prove E(X |N) = µN . Clearly (i) in
the definition holds. To check (ii), it suffices to consider A = {N = n} but in
this case ∫

{N=n}
X dP = E{(Y1 + · · · + Yn)1(N=n)}

= nµP (N = n) =
∫

{N=n}
µN dP

A similar computation shows that E(X2|N) = σ2N + (µN)2 so

var(X |N) = E(X2|N) −E(X |N)2 = σ2N

and using the previous exercise we have

var(X) = E(var(X |N)) + var(E(X |N))

= σ2EN + µ2var(N)

1.11. Exercise 1.8 with G = {∅,Ω} implies

E(Y −X)2 +E(X −EY )2 = E(Y −EY )2

since EY = EX , and EX2 = EY 2, E(X−EX)2 = E(Y −EY )2 and subtract-
ing we conclude E(Y −X)2 = 0.

1.12. Jensen’s inequality implies

E(|X ||F) ≥ |E(X |F)|

If the two expected values are equal then the two random variables must be
equal almost surely, so E(|X ||F) = E(X |F) a.s. on {E(X |F) > 0}. Taking
expected value and using the definition of conditional expectation

E(|X | −X ;E(X |F) > 0) = 0

This and a similar argument on {E(X |F) < 0} imply

sgn (X) = sgn (E(X |F)) a.s.

Taking X = Y − c it follows that sgn (Y − c) = sgn (E(Y |G) − c) a.s. for all
rational c from which the desired result follows.

1.13. (i) in the definition follows by taking h = 1A in Example 1.4. To check
(ii) note that the dominated convergence theorem implies that A → µ(y,A) is
a probability measure.
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1.14. If f = 1A this follows from the definition. Linearity extends the result to
simple f and monotone convergence to nonnegative f . Finally we get the result
in general by writing f = f+ − f−.

1.15. If we fix ω and apply the ordinary Hölder inequality we get
∫
µ(ω, dω′) |X(ω′)Y (ω′)|

≤
(∫

µ(ω, dω′)|X(ω′)|p
)1/p(∫

µ(ω, dω′)|Y (ω′)|q
)1/q

The desired result now follows from Exercise 1.14.

1.16. Proof As in the proof of (1.6), we find there is a set Ωo with P (Ωo) =
1 and a family of random variables G(q, ω), q ∈ Q so that q → G(q, ω) is
nondecreasing and ω → G(q, ω) is a version of P (ϕ(X) ≤ q|G). Since G(q, ω) ∈
σ(Y ) we can write G(q, ω) = H(q, Y (ω)). Let F (x, y) = inf{G(q, y) : q > x}.
The argument given in the proof of (1.6) shows that there is a set A0 with
P (Y ∈ A0) = 1 so that when y ∈ A0, F is a distribution function and that
F (x, Y (ω)) is a version of P (ϕ(X) ≤ x|Y ).
Now for each y ∈ Ao, there is a unique measure ν(y, ·) on (R,R) so that
ν(y, (−∞, x]) = F (x, y)). To check that for each B ∈ R , ν(Y (ω), B) is a version
of P (ϕ(X) ∈ B|Y ), we observe that the class of B for which this statement is
true (this includes the measurability of ω → ν(Y (ω), B)) is a λ-system that
contains all sets of the form (a1, b1] ∪ · · · (ak, bk] where −∞ ≤ ai < bi ≤ ∞,
so the desired result follows from the π − λ theorem. To extract the desired
r.c.d. notice that if A ∈ S, and B = ϕ(A) then B = (ϕ−1)−1(A) ∈ R, and set
µ(y,A) = ν(y,B).

4.2. Martingales, Almost Sure Convergence

2.1. Since Xn ∈ Gn and n → Gn is increasing Fn = σ(X1, . . . , Xn) ⊂ Gn. To
check that Xn is a martingale note that Xn ∈ Fn, while (1.2) implies

E(Xn+1|Fn) = E(E(Xn+1|Gn)|Fn) = E(Xn|Fn) = Xn

2.2. The fact that f is continuous implies it is bounded on bounded sets and
hence E|f(Sn)| <∞. Using various definitions now, we have

E(f(Sn+1)|Fn) = E(f(Sn + ξn+1)|Fn)

=
1

|B(0, 1)|

∫

B(Sn,1)

f(y) dy ≤ f(Sn)
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2.3. Let an ≥ 0 be decreasing. Then Xn = −an is a submartingale but Xn = a2
n

is a supermartingale.

2.4. Suppose P (ξi = −1) = 1 − εi, P (ξi = (1 − εi)/εi) = εi. Pick εi > 0 so that∑
i εi <∞, e.g. εi = i−2. P (ξi 6= −1 i.o.) = 0 so Xn/n→ −1 and Xn → −∞.

2.5. An =
∑n

m=1 P (Bm|Fm−1).

2.6. Since (Sn + ξn+1)2 = S2
n + 2Snξn+1 + ξ2n+1 and ξn+1 is independent of Fn,

we have

E(S2
n+1 − s2n+1|Fn) = S2

n + 2SnE(ξn+1|Fn) +E(ξ2n+1|Fn) − s2n+1

= S2
n + 0 + σ2

n+1 − s2n+1 = S2
n − s2n

2.7. Clearly, X(k)
n ∈ Fn. The independence of the ξi, (4.8) in Chapter 1 and

the triangle inequality imply E|X(k)
n | < ∞. Since X(k)

n+1 = X
(k)
n +X

(k−1)
n ξn+1

taking conditional expectation and using (1.3) gives

E(X(k)
n+1|Fn) = X(k)

n +X(k−1)
n E(ξn+1|Fn) = X(k)

n

2.8. Clearly, Xn ∨ Yn ∈ Fn. Since |Xn ∨ Yn| ≤ |Xn| + |Yn|, E|Xn ∨ Yn| < ∞.
Use monotonicity (1.1b) and the defintion of supermartingale

E(Xn+1 ∨ Yn+1|Fn) ≥ E(Xn+1|Fn) ≥ Xn

E(Xn+1 ∨ Yn+1|Fn) ≥ E(Yn+1|Fn) ≥ Yn

From this it follows that E(Xn+1 ∨ Yn+1|Fn) ≥ Xn ∨ Yn.

2.9. (i) Clearly Xn ∈ Fn, and E|Xn| <∞. Using (1.3) now we have

E(Xn+1|Fn) = XnE(Yn+1|Fn) = Xn

since Yn+1 is independent of Fn and has EYn = 1.
(ii) (2.11) implies Xn → X∞ <∞ a.s. We want to show that if P (Ym = 1) < 1
then X∞ = 0 a.s. To do this let ε be chosen so that P (|Ym − 1| > ε) = η > 0.
Now if δ > 0

P (|Xn+1 −Xn| ≥ δε) ≥ P (Xn ≥ δ)P (|Yn+1 − 1| > ε)

The almost sure convergence of Xn → X∞ implies the left hand side → 0 so
P (Xn ≥ δ) → 0. This shows Xn → 0 in probability, so X∞ = 0 a.s.
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(iii) Applying Jensen’s inequality with ϕ(x) = logx to Yi ∨ δ and then letting
δ → 0 we have E logYi ∈ [−∞, 0]. Applying the strong law of large numbers,
(7.3) in Chapter 1, to − logYi we have

1
n

logXn =
1
n

n∑

m=1

logYm → E logY1 ∈ [−∞, 0]

2.10. Our first step is to prove

Lemma. When |y| ≤ 1/2, y − y2 ≤ log(1 + y) ≤ y.

Proof 1 + y ≤ ey implies log(1 + y) ≤ y for all y. Expanding log(1 + y) in
power series gives

log(1 + y) = y − y2

2
+
y3

3
− y4

4
+ · · ·

When |y| ≤ 1/2
∣∣∣∣−
y2

2
+
y3

3
− y4

4
+ · · ·

∣∣∣∣ ≤
y2

2

(
1 +

1
2

+
1
22

+ · · ·
)

= y2

which completes the proof.

Now if
∑∞

m=1 |ym| <∞ we have |ym| ≤ 1/2 for m ≥M so
∑∞

m=1 y
2
m <∞ and

if N ≥M the lemma implies

∞∑

m=N

ym − y2
m ≤

∞∑

m=N

log(1 + ym) ≤
∞∑

m=N

ym

The last inequality shows
∑∞

m=N log(1+ym) → 0 as N → ∞, so
∏∞

m=1(1+ym)
exists.

2.11. Let Wn = Xn/
∏n−1

m=1(1 + Ym). Clearly Wn ∈ Fn, E|Wn| ≤ E|Xn| < ∞.
Using (1.3) now and the definition gives

E(Wn+1|Fn) =
1∏n

m=1(1 + Ym)
E(Xn+1|Fn)

≤ 1∏n−1
m=1(1 + Ym)

Xn = Wn

Thus Wn is a nonnegative supermartingale and (2.11) implies that Wn →W∞
a.s. The assumption

∑
m Ym <∞ implies that

∏n−1
m=1(1+Ym) →

∏∞
m=1(1+Ym),

so Xn →W∞
∏∞

m=1(1 + Ym) a.s.
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2.12. Let Sn be the random walk from Exercise 2.2. That exercise implies
f(Sn) ≥ 0 is a supermartingale, so (2.11) implies f(Sn) converges to a limit
almost surely. If f is continuous and noncontant then there are constants α < β
so that G = {f < α} and H = {f > β} are nonempty open sets. Since the
random walk Sn has mean 0 and finite variance, (2.7) and (2.8) in Chapter 3
imply that Sn visits G and H infinitely often. This implies

lim inf f(Sn) ≤ α < β ≤ lim sup f(Sn)

a contradiction which implies f must be constant.

2.13. Using the definition of Yn+1, the inequality X1
N ≥ X2

N , the fact that
{N ≤ n} ∈ Fn (and hence {N > n} ∈ Fn), and finally the supermartingale
property we have

E(Yn+1|Fn) = E(X1
n+11(N>n+1) +X2

n+11(N≤n+1)|Fn)

≤ E(X1
n+11(N>n) +X2

n+11(N≤n)|Fn)

= E(X1
n+1|Fn)1(N>n) +E(X2

n+1|Fn)1(N≤n)

≤ X1
n1(N>n) +X2

n1(N≤n) = Yn

2.14. (i) To start we note that Z1
n ≡ 1 is clearly a supermartingale. For the

induction step we have to consider two cases k = 2j and k = 2j+1. In the case
k = 2j we use the previous exercise with X1 = Z2j−1, X2 = (b/a)j−1(Xn/a),
and N = N2j−1. Clearly these are supermartingales. To check the other con-
dition we note that since XN ≤ a we have X1

N = (b/a)j−1 ≥ X2
N .

In the case k = 2j + 1 we use the previous exercise with X1 = Z2j and X2 =
(b/a)j , and N = N2j . Clearly these are supermartingales. To check the other
condition we note that since XN ≥ b we have X1

N ≥ (b/a)j = X2
N .

(ii) Since Z2k − n is a supermartingale, EY0 ≥ EYn∧N2k
. Letting n → ∞ and

using Fatou’s lemma we have

E(min(X0/a, 1) = EY0 ≥ E(YN2k
;N2k <∞) = (b/a)kP (U ≥ k)

4.3. Examples

3.1. Let N = inf{n : Xn > M}. XN∧n is a submartingale with

X+
N∧n ≤M + sup

n
ξ+n
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so supnEX
+
N∧n < ∞. (2.10) implies XN∧n → a limit so Xn converges on

{N = ∞}. Letting M → ∞ and recalling we have assumed supn ξ
+
n <∞ gives

the desired conclusion.

3.2. Let U1, U2, . . . be i.i.d. uniform on (0,1). If Xn = 0 then Xn+1 = 1 if
Un+1 ≥ 1/2, Xn+1 = −1 if Un+1 < 1/2. If Xn 6= 0 then Xn+1 = 0 if Un+1 >
n−2, while Xn+1 = n2Xn if Un+1 < n−2. [We use the sequence of uniforms
because it makes it clear that “the decisions at time n + 1 are independent of
the past.”]

∑
n 1/n2 < ∞ so the Borel Cantelli lemma implies that eventually

we just go from 0 to ±1 and then back to 0 again, so sup |Xn| <∞.

3.3. Modify the previous example so that if Xn = 0 then Xn+1 = 1 on
Un+1 > 3/4, Xn+1 = −1 if Un+1 < 1/4, Xn+1 = 0 otherwise. The previ-
ous argument shows that eventually Xn is indistiguishable from the Markov
chain with transition matrix




0 1 0
1/4 1/2 1/4
0 1 0




This chain converges to its stationary distribution which assigns mass 2/3 to 0
and 1/6 each to −1 and 1.

3.4. Let Wn = Xn −
∑n−1

m=1 Ym. Clearly Wn ∈ Fn and E|Wn| < ∞. Using the
linearity of conditional expectation,

∑n
m=1 Ym ∈ Fn, and the defintion we have

E(Wn+1|Fn) ≤ E(Xn+1|Fn) −
n∑

m=1

Ym

≤ Xn −
n−1∑

m=1

Ym = Wn

Let M be a large number and N = inf{k :
∑k

m=1 Ym > M}. Now WN∧n is a
supermartingale by (2.8) and

WN∧n = XN∧n −
(N∧n)−1∑

m=1

Ym

so applying (2.11) to M +WN∧n we see that limn→∞WN∧n exists and hence
limn→∞Wn exists on {N = ∞} ⊂ {

∑
m Ym ≤ M}. As M ↑ ∞ the right hand

side ↑ Ω, so the proof is complete.

3.5. Let Xm ∈ {0, 1} be independent with P (Xm = 1) = pm. Then
∞∏

m=1

(1 − pm) = P (Xm = 0 for all m ≥ 1)
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(i) If
∑∞

m=1 pm = ∞ then P (Xm = 1 i.o.) = 1 so the product is 0. (ii) If∑∞
m=1 pm < ∞ then

∑∞
m=M pm < 1 for large M , so P (Xm = 0 for all m ≥

M) > 0 and since pm < 1 for all m, P (Xm = 0 for all m ≥ 1) > 0.

3.6. Let p1 = P (A1) and pn = P (An| ∩n−1
m=1 A

c
m).

n∏

m=1

(1 − pm) = P (∩n
m=1A

c
m)

so letting n→ ∞ and using (i) of Exercise 3.5 gives the desired result.

3.7. Suppose Ik,n = I1,n+1 ∪ · · · ∪ Im,n+1. If ν(Ij,n+1) > 0 for all j we have by
using the various definitions that

∫

Ik,n

Xn+1 dP =
m∑

j=1

µ(Ij,n+1)
ν(Ij,n+1)

ν(Ij,n+1)

= µ(Ik,n) =
µ(Ik,n)
ν(Ik,n)

ν(Ik,n) =
∫

Ik,n

Xn dP

If ν(Ij,n+1) = 0 for some j then the first sum should be restricted to the j with
ν(Ij,n+1) > 0. If µ << ν the second = holds but in general we have only ≤.

3.8. If µ and ν are σ-finite we can find a sequence of sets Ωk ↑ Ω so that µ(Ωk)
and ν(Ωk) are < ∞ and ν(Ω1) > 0. By restricting our attention to Ωk we can
assume that µ and ν are finite measures and by normalizing that that ν is a
probability measure. Let Fn = σ({Bm : 1 ≤ m ≤ n}) where Bm = Am ∩ Ωk.
Let µn and νn be the restrictions of µ and ν to Fn, and let Xn = dµn/dνn.
(3.3) implies that Xn → X ν-a.s. where

µ(A) =
∫

A

X dν + µ(A ∩ {X = ∞})

Since X <∞ ν a.s. and µ << ν, the second term is 0, and we have the desired
Radon Nikodym derivative.

3.9. (i)
∫ √

qm dGm =
√

(1 − αm)(1 − βm) +
√
αmβm so the necessary and

sufficient condition is

∞∏

m=1

√
(1 − αm)(1 − βm) +

√
αmβm > 0

(ii) Let fp(x) =
√

(1 − p)(1 − x)+
√
px. Under our assumptions on αm and βm,

Exercise 3.5 implies
∏∞

m=1 fβm(αm) > 0 if and only if
∑∞

m=1 1−fβm(αm) <∞.
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Our task is then to show that the last condition is equivalent to
∑∞

m=1(αm −
βm)2 <∞. Differentiating gives

f ′
p(x) =

1
2

√
p

x
− 1

2

√
1 − p

1 − x

f ′′
p (x) = −1

4

√
p

x3/2
− 1

4

√
1 − p

(1 − x)3/2
< 0

If ε ≤ x, p ≤ 1 − ε then

−A ≡ −
√
ε

2(1− ε)3/2
≥ f ′′

p (x) ≥ −
√

1 − ε

2ε3/2
≡ −B

We have f ′
p(p) = 0 so integrating gives

0 ≥ fp(x) − fp(p) =
∫ x

p

f ′
p(y) dy

=
∫ x

p

∫ y

p

f ′′
p (z) dz dy ≥ −B(x− p)2/2

A similar argument establishes an upper bound of −A(x−p)2/2 so using fp(p) =
1 we have

A(x − p)2/2 ≤ 1 − fp(x) ≤ B(x − p)2/2

3.10. The Borel Cantelli lemmas imply that when
∑
αn < ∞ µ concentrates

on points in {0, 1}N with finitely many ones while
∑
βn = ∞ implies ν con-

centrates on points in {0, 1}N with infinitely many ones.

3.11. Let U1, U2, . . . be i.i.d. uniform on (0, 1). Let Xn = 1 if Un < αn and
0 otherwise. Let Yn = 1 if Un < βn and 0 otherwise. Then X1, X2, . . . are
independent with distribution Fn and Y1, Y2, . . . are independent with distri-
bution Gn. If

∑
|αn − βn| < ∞ then for large N

∑
n≥N |αn − βn| < 1 which

implies P (Xn = Yn for n ≥ N) > 0. Since 0 < αn < βn < 1 it follows that
P (Xn = Yn for n ≥ 1) > 0. This shows that the measures µ and ν induced by
the sequences (X1, X2, . . .) and (Y1, Y2, . . .) are not mutually singular so by the
Kakutani dichotomy they must be absolutely continuous.

3.12. Let θ = P (limZn/µ
n = 0). By considering what happens at the first step

we see

θ =
∞∑

k=0

pkθ
k = ϕ(θ)
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Since we assumed θ < 1, it follows from (b) in the proof of (3.10)) that θ = ρ.
It is clear that

{Zn > 0 for all n} ⊃ {limZn/µ
n > 0}

Since each set has probability 1 − ρ they must be equal a.s.

3.13. ρ is a root of

x =
1
8

+
3
8
x+

3
8
x2 +

1
8
x3
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Subtracting x from each side and the multiplying by 8 this becomes

0 = x3 + 3x2 − 5x+ 1 = (x− 1)(x2 + 4x− 1)

The quadratic has roots −2±
√

5 so ρ =
√

5 − 2.

4.4. Doob’s inequality, Lp convergence when p >

1

4.1. Since {N = k}, using Xj ≤ E(Xk|Fj) and the definition of conditional
expectation gives that

E(XN ;N = j) = E(Xj ;N = j) ≤ E(Xk;N = j)

Summing over j now we have EXN ≤ EXk.

4.2. Let Kn = 1M<n≤N . {M < n ≤ N} = {M ≤ n − 1} ∩ {N < n}c so Kn is
predictable. Yn = (K ·X)n = XN∧n −XM∧n is a submartingale. Taking n = k
and n = 0 we have EXN −EXM ≥ 0.

4.3. Exercise 1.7 in Chapter 3 implies that for A ∈ FM

L =
{
M on A
N on Ac

is a stopping time. Using Exercise 4.2 now gives EXL ≤ EXN . Since L = M
on A and L = N on Ac, subtracting E(XN ;Ac) from each side and using the
definition of conditional expectation gives

E(XM ;A) ≤ E(XM ;A) = E(E(XN |FM );A)

Since this holds for all A ∈ FM it follows that XM ≤ E(XN |FM ).

4.4. Let A = {max1≤m≤n |Sm| > x} and N = inf{m : |Sm| > x or m = n}.
Since N is a stopping time with P (N ≤ n) = 1, (4.1) implies

0 = E(S2
N − s2N ) ≤ (x+K)2P (A) + (x2 − var(Sn))P (Ac)

since on A, |SN | ≤ x + K and and on Ac, S2
N = S2

n ≤ x2. Letting P (A) =
1 − P (Ac) and rearranging we have

(x+K)2 ≥ (var(Sn) − x2 + (x +K)2)P (Ac) ≥ var(Sn)P (Ac)
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4.5. If −c < λ then using an obvious inequality, then (4.1) and the fact EXn = 0

P

(
max

1≤m≤n
Xm ≥ λ

)
≤ P

(
max

1≤m≤n
(Xn + c)2 ≥ (c+ λ)2

)

≤ E(Xn + c)2

(c+ λ)2
=
EX2

n + c2

(c+ λ)2

To optimize the bound we differentiate with respect to c and set the result to
0 to get

−2
EX2

n + c2

(c+ λ)3
+

2c
(c+ λ)2

= 0

2c(c+ λ) − 2(EX2
n + c2) = 0

so c = EX2
n/λ. Plugging this into the upper bound and then multiplying top

and bottom by λ2

EX2
n + (EX2

n/λ)
2

(
EX2

n

λ + λ
)2 =

(λ2 +EX2
n)(EX2

n)
(EX2

n + λ2)2

4.6. Since X+
n is a submartingale and xp is increasing and convex it follows that

(X+
m)p ≤ {E(X+

n |Fm)}p ≤ E((X+
n )p|Fm)

Taking expected value now we have E(X+
m)p <∞ and it follows that

EX̄p
n ≤

n∑

m=1

E(X+
m)p <∞

4.7. Arguing as in the proof of (4.3)

E(X̄n ∧M) ≤ 1 +
∫ ∞

1

P (X̄n ∧M ≥ λ) dλ

≤ 1 +
∫ ∞

1

λ−1

∫
X+

n 1(X̄n∧M≥λ) dP

≤ 1 +
∫
X+

n

∫ X̄n∧M

1

λ−1 dλ dP

= 1 +
∫
X+

n log(X̄n ∧M) dP



Section 4.5 Convergence in L1 67

(ii) a log b ≤ a log a+ b/e ≤ a log+ a+ b/e

Proof The second inequality is trivial. To prove the first we note that it is
trivial if b < a. Now for fixed a the maximum value of (a log b− a loga)/b for
b ≥ a occurs when

0 =
(
a log b− a log a

b

)′

=
a

b2
− a log b− a log a

b2

i.e., when b = ae. In this case the ratio = 1/e.

(iii) To complete the proof of (4.4) now we use the Lemma to get

E(X̄n ∧M) ≤ 1 +E(X+
n log+X+

n ) +E(X̄n ∧M)/e

Since E(X̄n ∧M)/e <∞ we can subtract this from both sides and then divide
by (1 − e−1) to get

E(X̄n ∧M) ≤ (1 + e−1)−1(1 +EX+
n log+X+

n )

LettingM → ∞ and using the dominated convergence theorem gives the desired
result.

4.8. (4.6) implies that E(XmYm−1) = E(Xm−1Ym−1). Interchanging X and Y ,
we have E(Xm−1Ym) = E(Xm−1Ym−1), so

E(Xm −Xm−1)(Ym − Ym−1)
= EXmYm −EXmYm−1 −EXm−1Ym −EXm−1Ym−1

= EXmYm + (−2 + 1)EXm−1Ym−1

Summing over m− 1 to n now gives the desired result.

4.9. Taking X = Y in the previous exercise

EX2
n = EX2

0 +
n∑

m=1

Eξ2m

So our assumptions imply supnEX
2
n and (4.5) implies Xn → X∞ in L2.

4.10. Applying the previous exercise to the martingale Yn =
∑n

m=1 ξm/bm we
have Ym → Y∞ a.s and in L2, so Kronecker’s lemma ((8.5) in Chapter 1) implies
(Xn −X0)/bn → 0 a.s.

4.11. SN∧n is a martingale with increasing process σ2(N ∧ n). If EN1/2 < ∞
then E supn |SN∧n| < ∞. (4.1) implies that ESN∧n = 0. Letting n → ∞ and
using the dominated convergence theorem, ESN = 0.



68 Section 4.5 Uniform Integrability, Convergence in L1

4.5. Uniform Integrability, Convergence in L1

5.1. Let εM = sup{x/ϕ(x) : x ≥M}. For i ∈ I

E(|Xi|; |Xi| > M) ≤ εME(ϕ(|Xi|); |Xi| > M) ≤ CεM

and εM → 0 as M → ∞.

5.2. Let Fn = σ(Y1, . . . , Yn). (5.5) implies that

E(θ|Fn) → E(θ|F∞)

To complete the proof it suffices to show that θ ∈ F∞. To do this we observe
that the strong law implies (Y1 + · · · + Yn)/n→ θ a.s.

5.3. Let an,k = {f((k+1)2−n)−f(k2−n)}/2−n. Since Ik,n = I2k,n+1∪I2k+1,n+1,
it follows from Example 1.3 that on Ik,n

E(Xn+1|Fn) =
a2k,n+1 + a2k+1,n

2
= ak,n = Xn

Since 0 ≤ Xn ≤ K it is uniformly integrable, so (5.5) implies Xn → X∞ a.s. and
in L1, and (5.5) implies Xn = E(X∞|Fn). This implies that

(∗) f(b) − f(a) =
∫ b

a

X∞(ω) dω

holds when a = k2−n and b = (k + 1)2−n. Adding a finite number of these
equations we see (∗) holds when a = k2−n and b = m2−n where m > k. Taking
limits and using the fact that f is continuous and |X(ω)| ≤ K we have (∗) for
all a and b.

5.4. E(f |Fn) is uniformly integrable so it converges a.s. and in L1 to E(f |F∞),
which is = f since f ∈ F∞.

5.5. On {lim infn→∞Xn ≤M}, Xn ≤M + 1 i.o. so

P (D|X1, . . . , Xn) ≥ δ(M + 1) > 0 i.o.

Since the right hand side → 1D, we must have

D ⊃ {lim inf
n→∞

Xn ≤M}

Letting M → ∞, we have D ⊃ {lim infn→∞Xn <∞} a.s.
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5.6. If p0 > 0 then P (Zn+1 = 0|Z1, . . . , Zn) ≥ pk
0 on {Zn ≤ k} so Exercise 5.5

gives the desired result.

5.7.
E(Xn+1|Fn) = Xn(α+ βXn) + (1 −Xn)βXn

= αXn + βXn = Xn

so Xn is a martingale. 0 ≤ Xn ≤ 1 so (5.5) implies Xn → X∞ a.s. and
in L1. When Xn = x, Xn+1 is either α + βx or βx so convergence to x ∈
(0, 1) is impossible. The constancy of martingale expectation and the bounded
convergence theorem imply

θ = EX0 = EXn → EX∞

Since X∞ ∈ {0, 1} it follows that P (X∞ = 1) = θ and P (X∞ = 0) = 1 − θ.

5.8. The trinagle inequality implies

E|E(Yn|Fn) −E(Y |F)| ≤ E|E(Yn|Fn) −E(Y |Fn)| +E|E(Y |Fn) −E(Y |F)|

Jensen’s inequality and (1.1f) imply

E|E(Yn|Fn) −E(Y |Fn)| ≤ EE(|Yn − Y | |Fn) = E|Yn − Y | → 0

since Yn → Y in L1. For the other term we note (5.6) implies

E|E(Y |Fn) −E(Y |F)| → 0

4.6. Backwards Martingales

6.1. The Lp maximal inequality (4.3) implies

E

(
sup

−n≤m≤0
|Xm|p

)
≤
(

p

p− 1

)p

E|X0|p

Letting n → ∞ it follows that supm |Xm| ∈ Lp. Since |Xn − X−∞|p ≤
2 sup |Xn|p it follows from the dominated convergence theorem thatXn → X−∞
in Lp.

6.2. Let WN = sup{|Yn − Ym| : n,m ≤ −N}. WN ≤ 2Z so EWN < ∞. Using
monotonicity (1.1b) and applying (6.3) to WN gives

lim sup
n→−∞

E(|Yn − Y−∞||Fn) ≤ lim
n→−∞

E(WN |Fn) = E(WN |F−∞)
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The last result is true for all N and WN ↓ 0 as N ↑ ∞, so (1.1c) implies
E(WN |F−∞) ↓ 0, and Jensen’s inequality gives us

|E(Yn|Fn) −E(Y−∞|Fn)| ≤ E(|Yn − Y−∞||Fn) → 0 a.s. as n→ −∞

(6.2) implies E(Y−∞|Fn) → E(Y−∞|F−∞) a.s. The desired result follows from
the last two conclusions and the triangle inequality.

6.3. By exchangeability all outcomes with m 1’s and (n−m) 0’s have the same
probability. If we call this r then by counting the number of outcomes in the
two events we have

P (Sn = m) =
(
n

m

)
r

P (X1 = 1, . . . , Xk = 1, Sn = m) =
(
n− k

m− k

)
r

Dividing the first equation by the second gives the desired result.

6.4. Exchangeability implies

0 ≤
(
n

2

)−1

E(X1 + · · · +Xn)2 = 2E(X1X2) +
(
n

2

)−1

nEX2
1

Letting n→ ∞ now gives the desired result.

6.5. Let ϕ(x, y) = (x − y)2 and define An(ϕ) as in (6.5). We have An(ϕ) =
E(ϕ(X1, X2)|En) so it follows from (6.3) that

E(ϕ(X1, X2)|En) → E(ϕ(X1, X2)|E) = Eϕ(X1, X2)

since E is trivial.

4.7. Optional Stopping Theorems

7.1. Let N = inf{n : Xn ≥ λ}. (7.6) implies EX0 ≥ EXN ≥ λP (N <∞).

7.2. Writing T instead of T1 and using (4.1) we have

E(ST∧n − (p− q)(T ∧ n))2 = σ2E(T ∧ n)

Letting n→ ∞ and using Fatou’s lemma

E(1 − (p− q)T )2 ≤ σ2ET <∞
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so ET 2 <∞. Expanding out the square in the first equation now we have

XT∧n = S2
T∧n − 2ST∧n(p− q)(T ∧ n) + (p− q)2(T ∧ n)2 − σ2(T ∧ n)

Now 1 ≥ ST∧n ≥ minm Sm and Example 7.1 implies E(minm Sm)2 < ∞, so
using the Cauchy Schwarz inequality for the second term we see that each of
the four terms is dominated by an integrable random variable so letting n→ ∞
and using dominated convergence

0 = 1 − 2(p− q)ET + (p− q)2ET 2 − σ2ET

Recalling ET = 1/(p− q) and solving gives

ET 2 =
1

(p− q)2
+

σ2

(p− q)3

so var(T ) = ET 2 − (ET )2 = σ2/(p− q)3.

7.3. (i) Using (4.1) we have

0 = ES2
T∧n − (T ∧ n)

As n → ∞, ES2
T∧n → a2 by bounded convergence, and E(T ∧ n) ↑ ET by

monotone convergence so ET = a2.
(ii) Since ξn = ±1 with equal probability, ξ2n = ξ4n = 1, and

E(S3
nξn+1|Fn) = S3

nE(ξn+1|Fn) = 0

E(Snξ
3
n+1|Fn) = SnE(ξ3n+1|Fn) = 0

E(Snξn+1|Fn) = SnE(ξn+1|Fn) = 0

Substituting Sn+1 = Sn + ξn+1, expanding out the powers and using the last
three identities

E
(
(Sn + ξn+1)4 − 6(n+ 1)(Sn + ξn+1)2 + b(n+ 1)2 + c(n+ 1)

∣∣∣Fn

)

= S4
n + 6S2

n + 1 − 6(n+ 1)S2
n − 6(n+ 1) + bn2 + b(2n+ 1) + cn+ c

= S4
n − 6nS2

n + bn2 + cn+ (2b− 6)n+ (b+ c− 5) = Yn

if b = 3 and c = 2. Using (4.1) now

3E(T ∧ n)2 = E{6(T ∧ n)S2
T∧n − S4

T∧n − 2(T ∧ n)}

Letting n → ∞, using the monotone convergence theorem on the left and the
dominated convergence theorem on the right.

3ET 2 = 6a2ET − a4 − 2ET
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Recalling ET = a2 gives ET 2 = (5a4 − 2a2)/3.

7.4. (i) Using (1.3) and the fact that ξn+1 is independent of Fn

E(Xn+1|Fn) = exp(θSn − (n+ 1)ψ(θ))E(exp(θξn+1)|Fn)
= exp(θSn − nψ(θ))

(ii) As shown in Section 1.9, ψ′(θ) = ϕ′(θ)/ϕ(θ) and if we let

dFθ = (eθx/ϕ(θ)) dF

then we have

d

dθ

ϕ′(θ)
ϕ(θ)

=
ϕ′′(θ)
ϕ(θ)

−
(
ϕ′(θ)
ϕ(θ)

)2

=
∫
x2 dFθ(x) −

(∫
x dFθ(x)

)2

> 0

since the last expression is the variance of Fθ, and this distribution is nonde-
generate if ξi is not constant.

√
Xθ

n = exp((θ/2)Sn − (n/2)ψ(θ))(iii)

= Xθ/2
n exp(n{ψ(θ/2) − ψ(θ)/2})

Strict convexity and ψ(0) = 0 imply ψ(θ/2) − ψ(θ)/2 < 0. Xθ/2
n is martingale

with Xθ/2
0 = 1 so

E
√
Xθ

n = exp(n{ψ(θ/2) − ψ(θ)/2}) → 0

as n→ ∞ and it follows that Xθ
n → 0 in probability.

7.5. If θ ≥ 0 then ϕ(θ) ≥ (eθ + e−θ)/2 ≥ 1 so ψ(θ) = lnϕ(θ) ≥ 0 and

Xn∧T = exp(θST∧n − (T ∧ n)ψ(θ)) ≤ eθ

Using (4.1), letting n → ∞ and using the bounded convergence theorem we
have

1 = EXT∧n → E exp(θST − Tψ(θ))

or since ST = 1, 1 = eθEϕ(θ)−T .
(ii) Setting ϕ(s) = peθ + qe−θ = 1/s and x = e−θ we have qsx2 − x + ps = 0.
Solving gives

EsT = x =
1 ±

√
1 − 4pqs2

2qs
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s → EsT is continuous on [0, 1] and → 0 as s → 0 so the − root is always the
right choice.

7.6. XT∧n is bounded so the optional stopping theorem and Chebyshev’s in-
equality imply 1 = EXT ≥ eθoaP (ST ≤ a).

7.7. Let η be Normal(0, σ2).

Eeθξ1 = Eeθ(c−µ−η) = eθ(c−µ)

∫
e−θx 1√

2πσ2
e−x2/2σ2

dx

= exp(θ(c− µ) + θ2σ2/2) ·
∫

1√
2πσ2

e−(x+θσ2)2/2σ2
dx

= exp(θ(c− µ) + θ2σ2/2)

since the integral is the total mass of a normal density with mean −θσ2 and
variance σ2. Taking θo = 2(µ− c)/σ2 we have ϕ(θo) = 1. Applying the result
in Exercise 7.6 to Sn − S0 with a = −S0, we have the desired result.

7.8. Using Exercise 1.1 in Chapter 4, the fact that the ξn+1
j are independent of

Fn, the definition of ϕ, and the definition of ρ, we see that on {Zn = k}

E(ρZn+1 |Fn) = E(ρξn+1
1 +···+ξn+1

k |Fn) = ϕ(ρ)k = ρk = ρZn

so ρZn is a martingale. Let N = inf{n : Zn = 0}. (4.1) implies ρx = Ex(ρZN∧n).
Exercise 5.6 implies that Zn → ∞ on N = ∞ so letting n → ∞ and using the
bounded convergence theorem gives the desired result.



5 Markov Chains

5.1. Definitions and Examples

1.1. Exercise 1.1 of Chapter 4 implies that on Zn = i > 0

P (Zn+1 = j|Fn) = P

(
i∑

m=1

ξn+1
m

∣∣∣∣∣Fn

)
= p(i, j)

since the ξn+1
m are independent of Fn.

1.2. p2(1, 2) = p(1, 3)p(3, 2) = (0.9)(0.4) = 0.36. To get from 2 to 3 in three
steps there are three ways 2213, 2113, 2133, so

p3(2, 3) = (.7)(.9)(.1 + .3 + .6) = .63

1.3. This is correct for n = 0. For the inductive step note

Pµ(Xn+1 = 0) = Pµ(Xn = 0)(1 − α) + Pµ(Xn = 1)β

= (1 − α)
{

β

β + α
+ (1 − α− β)n

(
µ(0) − β

α+ β

)}

+ β

{
α

β + α
− (1 − α− β)n

(
µ(0) − β

α+ β

)}

=
β

β + α
+ (1 − α− β)n+1

(
µ(0) − β

α+ β

)

1.4. The transition matrix is

HH HT TH TT
HH 1/2 1/2 0 0
HT 0 0 1/2 1/2
TH 1/2 1/2 0 0
TT 0 0 1/2 1/2
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Since Xn and Xn+2 are independent p2(i, j) = 1/4 for all i and j.

1.5.
AA,AA AA,Aa AA,aa Aa,Aa Aa,aa aa,aa

AA,AA 1 0 0 0 0 0
AA,Aa 1/4 1/2 0 1/4 0 0
AA,aa 0 0 0 1 0 0
Aa,Aa 1/16 1/4 1/8 1/4 1/4 1/16
Aa,aa 0 0 0 1/4 1/2 1/4
aa,aa 0 0 0 0 0 1

1.6. This is a Markov chain since the probability of adding a new value at time
n+1 depends on the number of values we have seen up to time n. p(k, k+1) =
1 − k/N , p(k, k) = k/N , p(i, j) = 0 otherwise.

1.7. Xn is not a Markov chain since Xn+1 = Xn +1 with probability 1/2 when
Xn = Sn and with probability 0 when Xn > Sn.

1.8. Let i1, . . . , in ∈ {−1, 1} and N = |{m ≤ n : im = 1}|.

P (X1 = i1, . . . , Xn = in) =
∫
θN (1 − θ)n−N dθ

P (X1 = i1, . . . , Xn = in, Xn+1 = 1) =
∫
θN+1(1 − θ)n−N dθ

Now
∫ 1

0
xm(1 − x)k dx = m!k!/(m+ k + 1)! so

P (Xn+1 = 1|X1 = i1, . . . , Xn = in) =
(Sn + 1)!/(n+ 2)!
Sn!/(n+ 1)!

=
Sn + 1
n+ 2

(ii) Since the conditional expectation is only a function of Sn, (1.1) implies that
Sn is a Markov chain.

5.2. Extensions of the Markov Property

2.1. Using the hint, 1A ∈ Fn, the Markov property (2.1), then Eµ(1B |Xn) ∈
σ(Xn)

Pµ(A ∩ B|Xn) = Eµ(Eµ(1A1B |Fn)|Xn)
= Eµ(1AEµ(1B |Fn)|Xn)
= Eµ(1AEµ(1B |Xn)|Xn)
= Eµ(1A|Xn)Eµ(1B |Xn)
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2.2. Let A = {x : Px(D) ≥ δ}. The Markov property and the definition of A
imply P (D|Xn) ≥ δ on {Xn ∈ A}. so (2.3) implies

P ({Xn ∈ A i.o.} − {Xn = a i.o.}) = 0

Since δ > 0 is arbitrary the desired result follows.
(ii) Under the assumptions of Exercise 5.5 in Chapter 4, h(Xn) → 0 implies
Xn → ∞.

2.3. Clearly, Px(Xn = y) =
∑n

m=1 Px(Ty = m,Xn = y). When m = n,
Px(Ty = n,Xn = y) = Px(Ty = n) = Px(Ty = n)p0(y, y). To handle m < n
note that the Markov property implies

Px(Xn = y|Fn) = Px(1(Xn−m=y) ◦ θm|Fm) = PXm(Xn−m = y)

Integrating over {Ty = m} ∈ Fm where Xm = y and using the definition of
conditional expectation we have

Px(Ty = m,Xn = y) = Ex(1{Xn=y};Ty = m)

= Px(Ty = m)Py(Xn−m = y) = Px(Ty = m)pn−m(y, y)

2.4. Let T = inf{m ≥ k : Xm = x}. Imitating the proof in Exercise 2.3 it is
easy to show that

Px(Xm = x) =
m∑

`=k

Px(T = `)pm−`(x, x)

Summing from m = k to n+ k, using Fubini’s theorem to interchange the sum,
then using the trivial inequalities pj(x, x) ≥ 0 and Px(T ≤ n+ k) ≤ 1 we have

n+k∑

m=k

Px(Xm = x) =
n+k∑

m=k

m∑

`=k

Px(T = `)pm−`(x, x)

=
n+k∑

`=k

n+k∑

m=`

Px(T = `)pm−`(x, x)

≤
n+k∑

`=k

Px(T = `)
n∑

j=0

pj(x, x)

≤
n∑

j=0

pj(x, x) =
n∑

m=0

Px(Xm = x)
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2.5. Since Px(τC <∞) > 0 there is an n(x) so that Px(τC ≤ n(x)) > 0. Let

N = max
x∈S−C

n(x) <∞ ε = min
x∈S−C

Px(τC ≤ N) > 0

The Markov property implies

Px(τC ◦ θ(k−1)N > N |F(k−1)N ) = PX(k−1)N (τC > N)

Integrating over {τC > (k−1)N} using the definition of conditional probability
and the bound above we have

Px(τC > kN) = Ex

(
1(τC◦θ(k−1)N >N); τC > (k − 1)N

)

= Ex

(
Px(τC ◦ θ(k−1)N > N |F(k−1)N ); τC > (k − 1)N

)

= Ex

(
PX(k−1)N (τC > N); τC > (k − 1)N

)

≤ (1 − ε)Px(τC > (k − 1)N)

from which the result follows by induction.

2.6. (i) If x 6∈ A ∪ B then 1(τA<τB) ◦ θ1 = 1(τA<τB). Taking expected value we
have

Px(τA < τB) = Ex(1(τA<τB) ◦ θ1)
= Ex(Ex(1(τA<τB) ◦ θ1|F1)) = Exh(X1)

(ii) To simplify typing we will write T for τA∪B . On {T > n} ∈ Fn we have
X(n+1)∧T = Xn+1 so using Exercise 1.1 in Chapter 4, the Markov property and
(i) we have

E(h(Xn∧T )|Fn) = E(h(Xn+1)|Fn) = E(h(X1) ◦ θn|Fn)
= EXnh(X1) = h(Xn) = h(Xn∧T )

On {T ≤ n} ∈ Fn we have X(n+1)∧T = Xn∧T ∈ Fn so using Exercise 1.1 in
Chapter 4 we have

E(h(X(n+1)∧T )|Fn) = E(h(Xn∧T )|Fn) = h(Xn∧T )

(iii) Exercise 2.5 implies that T = τA∪B <∞ a.s. Since S−(A∪B) is finite, any
solution h is bounded, so the martingale property and the bounded convergence
theorem imply

h(x) = Exh(Xn∧T ) → Exh(XT ) = Px(τA < τB)

2.7. (i) 0 = E0Xn and Xn ≥ 0 imply P0(Xn = 0) = 1. Similarly. N = ENXn

and Xn ≤ N imply PN (Xn = N) = 1.
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(ii) Exercise 2.5 implies Px(τ0 ∧ τN < ∞) = 1. The martingale property and
the bounded convergence theorem imply

x = Ex(X(τ0 ∧ τN ∧ n))
→ ExX(τ0 ∧ τN ) = NPx(τN < τ0)

2.8. (i) corresponds to sampling with replacement from a population with i 1’s
and (N − i) 0’s so the expected number of 1’s in the sample is i.
(ii) corresponds to sampling without replacement from a population with 2i 1’s
and 2(N − i) 0’s so the expected number of 1’s in the sample is i.

2.9. The expected number of A’s in each offspring = 2 times the fraction of A’s
in its parents, so the number of A’s is a martingale. Using Exercise 2.7 we see
that the absorption probabilities from a starting point with k A’s is k/4.

2.10. (i) If x 6∈ A, τA ◦ θ1 = τA − 1. Taking expected value gives

g(x) − 1 = Ex(τA − 1) = Ex(τA ◦ θ1)
= ExEx(τA ◦ θ1|F1) = Exg(X1)

(ii) On {τA > n} ∈ Fn, g(X(n+1)∧τA
) + (n + 1) ∧ τA = g(Xn+1) + (n + 1), so

using Exercise 1.1 in Chapter 4, and (i) we have

Ex(g(X(n+1)∧τA
) + (n+ 1) ∧ τA|Fn) = Ex(g(Xn+1) + (n+ 1)|Fn)

= E(g(Xn+1)|Fn) + (n+ 1) = g(Xn) − 1 + (n+ 1) = g(Xn) + n

On {τA ≤ n} ∈ Fn, g(X(n+1)∧τA
)+(n+1)∧τA = g(Xn∧τA)+(n∧τA), so using

Exercise 1.1 in Chapter 4, we have

Ex(g(X(n+1)∧τA
) + ((n+ 1) ∧ τA)|Fn) = Ex(g(Xn∧τA) + (n ∧ τA)|Fn)

= g(Xn∧τA) + (n ∧ τA)

(iii) Exercise 2.5 implies Py(τA > kN) ≤ (1 − ε)k for all y 6∈ A so EyτA < ∞.
Since S − A is finite any solution is bounded. Using the martingale property,
the bounded and monotone convergence theorems

g(x) = Ex(g(Xn∧τA) + (n ∧ τA)) → ExτA

2.11. In this case the equation (∗) becomes

g(H,H) = 0

g(H,T ) = 1 +
1
2
g(T,H) +

1
2
g(T, T )

g(T,H) = 1 +
1
2
g(H,T )

g(T, T ) = 1 +
1
2
g(T,H) +

1
2
g(T, T )
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Comparing the second and fourth equations we see g(H,T ) = g(T, T ). Using
this in the second equation and rearranging the third gives

g(T, T ) = 2 + g(T,H)
g(H,T ) = 2g(T,H)− 2

Noticing that the left-hand sides are equal and solving gives g(T,H) = 4,
g(H,T ) = g(T, T ) = 6, and

EN1 =
1
4
(4 + 6 + 6) = 4

2.12. (ii) We claim that

P (Ij = 1|Ij+1 = ij+1, . . . , Ik = ik) = 1/j

To prove this note that if n = inf{m > j : im = 1} then the conditioning
event tells us that when the chain left n it jumped to at least as far as j. Since
the original jump distribution was uniform on {1, . . . , n − 1} the conditional
distribution is uniform on {1, . . . , j}.

5.3. Recurrence and Transience

3.1. vk = v1 ◦ θRk−1 . Let v be one of the countably many possible values for the
vi. Since X(Rk−1) = y a.s., the strong Markov property implies

Py(v1 ◦ θRk−1 = v|FRk−1) = Py(v1 = v)

This implies vk is independent of FRk−1 and hence of v1, . . . , vk−1

3.2. (i) follows from Exercise 2.3. To prove (ii) note that using (i), Fubini’s
theorem, and then changing variables in the inner sum gives

u(s) − 1 =
∞∑

n=1

uns
n =

∞∑

n=1

n∑

m=1

fmun−ms
n

=
∞∑

m=1

∞∑

n=m

fms
mun−ms

n−m

=
∞∑

m=1

fms
m
∑

k=0

uks
k = f(s)u(s)
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3.3. If h(x) = (1 − x)−1/2. Differentiating we have

h′(x) =
1
2
(1 − x)−3/2

h′′(x) =
1
2
· 3
2
· (1 − x)−5/2

h(m)(x) =
(2m)!
m!4m

(1 − x)−(2m+1)/2

Recalling h(x) =
∑∞

m=0 h
(m)(0)/m! we have

u(s) =
∞∑

m=0

(
2m
m

)
pmqms2m = (1 − 4pqs2)−1/2

so using Exercise 3.2 f(s) = 1 − 1/u(s) = 1 − (1 − 4pqs2)1/2.
(iii) Setting s = 1, we have P0(T0 <∞) = 1 − (1 − 4pq)1/2.

3.4. The strong Markov property implies

Px(Tz ◦ θTy <∞|FTy ) = Py(Tz <∞) on {Ty <∞}

Integrating over {Ty <∞} and using the definition of conditional expectation

Px(Tz <∞) ≥ Px(Tz ◦ θTy <∞)
= Ex(Px(Tz ◦ θTy <∞|FTy );Ty <∞)
= Ex(Py(Tz <∞);Ty <∞)
= Px(Ty <∞)Py(Tz <∞)

3.5. ρxy > 0 for all x, y so the chain is irreducible. The desired result now
follows from (3.5).

3.6. (i) Using (3.7) we have

P20(T40 < T0) =
∑19

m=0(20/18)m

∑39
m=0(20/18)m

=
(20/18)19 − (20/18)−1

(20/18)39 − (20/18)−1

Multiplying top and bottom by 20/18 and calculating that (20/18)20 = 8.225,
(8.225)2 = 67.654 we have

P20(T40 < T0) =
7.225
66.654

= 0.1084
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(ii) Using (4.1), rearranging and then using the monotone and dominated con-
vergence theorems we have

E20

(
XT∧n +

2
38

(T ∧ n)
)

= 20

E20(T ∧ n) = 380− 19E20(XT∧n)
E20T = 380− 19 · 40 · P20(T40 < T0) = 297.6

3.7. Let τ = inf{n > 0 : Xn ∈ F}, ε = inf{ϕ(x) : x ∈ F}, and pick y so
that ϕ(y) < ε. Our assumptions imply that Yn = ϕ(Xn∧τ ) is supermartingale.
Using (4.1) in Chapter 4 now we see that

ϕ(y) ≥ Eyϕ(Xn∧τ ) ≥ εPy(τ < n)

Letting n→ ∞ we see that Py(τ <∞) ≤ ϕ(y)/ε < 1.

3.8. Writing px = 1/2 + cx/x we have

ExX
α
1 − xα = ((x+ 1)α − xα) px + ((x− 1)α − xα) qx

=
1
2

((x+ 1)α − 2xα + (x− 1)α)

+
cx
x

({(x+ 1)α − xα} + {xα − (x− 1)α})

A little calculus shows

(x+ 1)α − xα =
∫ 1

0

α(x + y)α−1 dy ∼ αxα−1

(x + 1)α − 2xα + (x− 1)α =
∫ 1

0

α{(x+ y)α−1 − (x− 1 + y)α−1} dy

∼ α(α − 1)xα−2

This implies that when x is large

ExX
α
1 − xα ≈ αxα−2

{
α− 1

2
+ 2C

}

If C < 1/4 then by taking α close to 0 we can make this < 0. When C > 1/4
we take α < 0, so we want the quantity inside the brackets to be > 0 which
again is possible for α close enough to 0.

3.9. If f ≥ 0 is superharmonic then Yn = f(Xn) is a supermartingale so Yn

converges a.s. to a limit Y∞. If Xn is recurrent then for any x, Xn = x i.o., so
f(x) = Y∞ and f is constant.
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Conversely, if the chain is transient then Py(Ty < ∞) < 1 for some x and
f(x) = Px(Ty <∞) is a nonconstant superharmonic function.

3.10. ExX1 = px+ λ < x if λ < (1 − p)x.

5.4. Stationary Measures

4.1. The symmetric form of the Markov property given in Exercise 2.1 implies
that for any initial distribution Ym is a Markov chain. To compute its transition
probability we note

Pµ(Ym+1 = y|Ym = x) =
Pµ(Ym = x, Ym+1 = y)

Pµ(Ym = x)

=
Pµ(Xn−(m+1) = y)Pµ(Xn−m = x|Xn−(m+1) = y)

Pµ(Xn−m = x)

=
µ(y)p(y, x)

µ(x)

4.2. In order for the chain to visit j before returning to 0, it must jump to j or
beyond, which has probability

∑∞
k=j fk+1 and in this case it will visit j exactly

once.
(ii) Plugging into the formula we have

q(i, i+ 1) =
µ(i+ 1)
µ(i)

= P (ξ > i+ 1|ξ > i)

q(i, 0) =
µ(0)p(0, i)

µ(i)
= P (ξ = i+ 1|ξ > i)

which a little thought reveals is the transition probability for the age of the
item in use at time n.

4.3. Since the stationary distribution is unique up to constant multiples

µy(z)
µy(y)

=
µx(z)
µx(y)

Since µy(y) = 1 rearranging gives the desired equality.

4.4. Since simple random walk is recurrent, (4.4) implies that the stationary
measure µ(x) ≡ 1 is unique up to constant multiples. If we do the cycle trick
starting from 0, the resulting stationary measure has µ0(0) = 1 and µ0(k) =
the expected number of visits to k before returning to 0, so µ0(k) = 1.
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4.5. If we let a = Px(Ty < Tx) and b = Py(Tx < Ty) then the number of visits to
y before we return to x has Px(Ny = 0) = 1−a and Px(Nk = j) = a(1− b)j−1b
for j ≥ 1, so ENk = a/b. In the case of random walks when x = 0 we have
a = b = 1/2|y|.

4.6. (i) Iterating shows that

qn(x, y) =
µ(y)pn(y, x)

µ(x)

Given x and y there is an n so that pn(y, x) > 0 and hence qn(x, y) > 0.
Summing over n and using (3.3) we see that all states are recurrent under q.
(ii) Dividing by µ(y) and using the defintion of q we have

h(y) =
ν(y)
µ(y)

≥
∑

x

q(y, x)
ν(x)
µ(x)

so h is nonnegative superharmonic, and Exercise 3.9 implies that it must be
constant.

4.7. By (4.7) the renewal chain is positive recurrent if and only if E0T0 < ∞
but X1 = k implies T0 = k + 1 so E0T0 =

∑
k kfk.

4.8. Let n = inf{m : pm(x, y) > 0} and pick x1, . . . , xn−1 6= x so that

p(x, x1)p(x1, x2) · · · p(xn−1, y) > 0

The Markov property implies

ExTx ≥ Ex(Tx;X1 = x1, . . . , Xn−1 = xn−1, Xn = y)
≥ p(x, x1)p(x1, x2) · · · p(xn−1, y)EyTx

so EyTx <∞.

4.9. If p is recurrent then any stationary distribution is a constant multiple of µ
and hence has infinite total mass, so there cannot be a stationary distribution.

4.10. This is a random walk on a graph, so µ(i) = the degree of i defines a
stationary measure. With a little patience we can compute the degrees for the
upper 4 × 4 square in the chessboard to be

2 3 4 4
3 4 6 6
4 6 8 8
4 6 8 8
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Adding up these numbers we get 84 so the total mass of µ is 336. Thus if π
is the stationary distribution and c is a corner then π(c) = 2/336 and (4.6)
implies EcTc = 168.

4.11. Using (4.1) from Chapter 4 it follows that

x ≥ Ex (Xn∧τ + ε(n ∧ τ)) ≥ εEx(τ ∧ n)

Letting n→ ∞ and using the monotone convergence theorem the desired result
follows.

4.12. The Markov property and the result of the previous exercise imply that

E0T0 − 1 =
∑

x

p(0, x)Exτ ≤
∑

x

p(0, x)
x

ε
=

1
ε
ExX1 <∞

5.5. Asymptotic Behavior

5.1. Making a table of the number of black and white balls in the two urns

L R
black n b− n
white m− n m− (b− n)

we can read off the transition probability. If 0 ≤ n ≤ b then

p(n, n+ 1) =
m− n

m
· b− n

m

p(n, n− 1) =
n

m
· m+ n− b

m

p(n, n) = 1 − p(n, n− 1) − p(n, n+ 1)

5.2. {1, 7}, {2, 3}, {4, 5, 6}.

5.3. Let Z be a bounded invariant random variable and h(x) = ExZ. The
invariance of Z and the Markov property imply

Eµ(Z|Fn) = Eµ(Z ◦ θn|Fn) = h(Xn)

so h(Xn) is martingale and h is a bounded harmonic function.
Conversely if h is bounded and harmonic then h(Xn) is a bounded martingale.
(2.10) in Chapter 4 implies Z = limn→∞ h(Xn) exists. Z is shift invariant since
Z ◦ θ = limn→∞ h(Xn+1). (5.5) in Chapter 4 implies h(Xn) = E(Z|Fn).
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5.4. (i) ξm corresponds to the number of customers that have arrived minus
the one that was served. It is easy to see that the M/G/1 queue satisfies
Xn+1 = (Xn + ξm+1)+ and the new defintion does as well.
(ii) When Xm−1 = 0 and ξm = −1 the random walk reaches a new negative
minimum so

|{m ≤ n : Xm−1 = 0, ξm = −1}| =
(

min
m≤n

Sm

)−

The desired result follows once we show that

n−1 min
m≤n

Sm → Eξm = µ− 1

To do this note that the strong law of large numbers implies that Sn/n→ µ−1.
This implies that

lim sup
n→∞

n−1 min
m≤n

Sm ≤ µ− 1

To argue the other inequality, note that if ε > 0 and n ≥ N then Sn ≥ (µ −
1)(1+ ε)n. When n is large the minimum no longer comes from the n ≤ N and
we have

n−1 min
m≤n

Sm ≥ (µ− 1)(1 + ε)

5.5. (i) The fact that the V f
k are i.i.d. follows from Exercise 3.1, while (4.3)

implies

E|V f
k | ≤ EV

|f |
k =

∫
|f(y)|µx(dy)

(ii) The strong law of large numbers implies

1
m

m∑

k=1

V f
k → EV f

k a.s.

Taking m = Kn and noting that the renewal theorem implies Kn/n→ 1/ExTx

a.s. the desired result follows.
(iii) From Exercise 6.14 in Chapter 1 we see that if EV |f |

n <∞ then

1
n

max
1≤m≤n

V |f |
m → 0 a.s.

It is easy to see that Kn ≤ n and
∣∣∣∣∣

n∑

m=1

f(Xm) −
Kn∑

m=1

V f
m

∣∣∣∣∣ ≤ max
1≤m≤n

V |f |
m
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and the desired result follows.

5.6. (i) From (ii) in Exercise 5.5, we know that Kn/n → 1/ExTx. Since the
V f

k are i.i.d. with EV f
k = 0 and E(V f

k )2 < ∞ the desired result follows from
Exercise 4.7 in Chapter 2.
(ii) E(V |f |

k )2 <∞ implies that for any ε > 0
∑

k

P
{
(V |f |

k )2 > ε2k
}
<∞

so the Borel-Cantelli lemma implies P (V |f |
k > ε

√
k i.o.) = 0. From this it

follows easily that
n−1/2 sup

k≤n
V

|f |
k → 0 a.s.

Since Kn ≤ n the desired result follows easily.

5.7. Let Sk =
∑T k

y

m=1 1(Xm=z). Applying (i) in Exercise 5.5 to f = 1{z} then
using the strong law and (4.4) we have

Sk/k → µy(z) =
m(z)
m(y)

a.s.

If T k
y ≤ n < T k+1

y then

Sk

k
≤ Nn(z)

k
≤ Sk+1

k + 1
· k + 1

k

Letting k → ∞ now we get the desired result.

5.8. (i) Breaking things down according to the value of J

Px(Xm = z) = p̄m(x, z) +
m−1∑

j=1

Px(Xm = z, J = j)

= p̄m(x, z) +
m−1∑

j=1

Px(Xj = y,Xj+1 6= y, . . . , Xm−1 6= y,Xm = z)

If we let Ak = {X1 6= y, . . . , Xk−1 6= y,Xk = z} then using the definition of
Ak, the definition of conditional expectation, the Markov property, and the
definitions of pj and p̄m−j

Px(Xj = y,Xj+1 6= y, . . . , Xm−1 6= y,Xm = z) = Ex(1Am−j ◦ θj ;Xj = y)
= Ex(Ex(1Am−j ◦ θj |Fj);Xj = y)

= Ex(Py(Am−j);Xj = y) = pj(x, y)p̄m−j(y, z)
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Combining this with the first equality and summing over m

n∑

m=1

pm(x, z) =
n∑

m=1

p̄m(x, z) +
n∑

m=1

m−1∑

j=1

pj(x, y)p̄m−j(y, z)

Interchanging the order of the last two sums and changing variables k = m− j
gives the desired formula.
(ii) Py(Tx < Ty)

∑∞
m=1 p̄m(x, z) ≤ µy(z) < ∞ and recurrence implies that∑∞

m=1 p
m(x, y) = ∞ so we have

n∑

m=1

p̄m(x, z)

/
n∑

m=1

pm(x, y) → 0

To handle the second term let aj = pj(x, y), bm =
∑m

k=1 p̄k(y, z) and note that
bm → µy(z) and am ≤ 1 with

∑∞
m=1 am = ∞ so

n−1∑

j=1

ajbn−j

/
n∑

m=1

am → µy(z)

To prove the last result let ε > 0, pick N so that |bm − µy(z)| < ε for m ≥ N
and then divide the sum into 1 ≤ j ≤ n−N and n−N < j < n.

5.9. By aperiodicity we can pick an Nx so that for all n ≥ Nx p
n(x, x) > 0. By

irreducibility there is an n(x, y) so that pn(x,y)(x, y) > 0. Let

N = max{Nx, n(x, y) : x, y ∈ S} <∞

by the finiteness of S.

p2N (x, y) ≥ pn(x,y)(x, y)p2N−n(x,y)(y, y) > 0

since 2N − n(x, y) ≥ N .

5.10. If ε = inf p(x, y) > 0 and there are N states then

P (Xn+1 = Yn+1|Xn = x, Yn = y) =
∑

z

p(x, z)p(y, z) ≥ ε2N

so P (T > n+ 1|T > n) ≤ (1 − ε2N) and we have P (T > n) ≤ (1 − ε2N)n.

5.11. To couple Xn+m and Yn+m we first run the two chains to time n. If
Xn = Yn an event with probability ≥ 1 − αn then we can certainly arrange
things so that Xn+m = Yn+m. On the other hand it follows from the definition
of αm that

P (Xn+m 6= Yn+m|Xn = k, Yn = `) ≤ αm
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5.6. General State Space

6.1. As in (3.2)

∞∑

n=1

p̄n(α, α) =
∞∑

k=1

Pα(Rk <∞)

=
∞∑

k=1

Pα(R <∞)k =
Pα(R <∞)

1 − Pα(R <∞)

6.2. By Example 6.1, without loss of generality A = {a} and B = {b}. Let
R = {x : ρbx > 0}. If α is recurrent then b is recurrent, so if x ∈ R then (3.4)
implies x is recurrent. (i) implies ρxb > 0. If y is another point in R then
Exercise 3.4 implies ρxy ≥ ρxbρby > 0 so R is irreducible. Let T = S − R. If
z ∈ T then ρbz = 0 but ρzb > 0 so z is transient by remarks after Example 3.1.

6.3. Suppose that the chain is recurrent when (A,B) is used. Since Px(τA′ <
∞) > 0 we have Pα(τA′ < ∞) > 0 and (6.4) implies Pα(X̄n ∈ A′ i.o.) = 1. (ii)
of the definition for (A′, B′) and (2.3) now give the desired result.

6.4. If Eξn ≤ 0 then P (Sn ≤ 0 for some n) = 1 and hence

P (Wn = 0 for some n) = 1

If Eξn > 0 then Sn → ∞ a.s. and P (Sn > 0 for all n) > 0, so we have P (Wn >
0 for all n) > 0.

6.5. V1 = θV0 + ξ1. Let N be chosen large enough so that E|ξ1| ≤ (1 − θ)N . If
|x| ≥ N then

Ex|V1| ≤ θ|x| +E|ξ1| ≤ |x|

Using (3.9) now with ϕ(x) = |x| we see that Px(|Vn| ≤ N) = 1 for any x. From
this and the Markov property it follows that Px(|Vn| ≤ N i.o.) = 1. Since

inf
y:|y|≤N

Py(V̄2 = α) > 0

it follows from (2.3) that Vn is recurrent.

6.6.

Px(V1 < γx) ≤ Px(ξ1 < (γ − θ)x) ≤ E|ξ|
(θ − γ)x

If x is large
∑∞

n=1
E|ξ|

(θ−γ)xγn−1 < 1 so Px(Vn ≥ γnx for all n) > 0.
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6.7. Let Fn = σ(Y0, . . . , Yn). In this case |Yn| = β
√

|Yn−1||χn| where χn is a
standard normal independent of Fn−1 The sign of Yn is independent of Fn−1

and |Yn| so it is enough to look at the behavior of |Yn|. Taking logs and iterating
we have

log |Yn| = log(β|χn|) + 2−1 log |Yn−1|
= log(β|χn|) + 2−1 log(β|χn−1|) + 2−2 log |Yn−2|

=
n−1∑

m=0

2−m log(β|χn−m|) + 2−n log |Y0|

Since E log(β|χ|) <∞ it is easy to see from this representation that log |Yn| ⇒
a limit independent of Y0. Using P (|Yn| ≤ K i.o.) ≥ lim supP (|Yn| ≤ K) and
(2.3) now it follows easily that Yn is recurrent for any β.

6.8. Let T0 = 0 and Tn = inf{m ≥ Tn−1 + k : Xm ∈ Gk,δ}. The definition of
Gk,δ implies

P (Tn < Tα|Tn−1 < Tα) ≤ (1 − δ)

so if we let N = sup{n : Tn < Tα} then EN ≤ 1/δ. Since we can only have
Xm ∈ Gk,δ when Tn ≤ m < Tn + k for some n ≥ 0 it follows that

µ̄(Gk,δ) ≤ k

(
1 +

1
δ

)
≤ 2k/δ

Assumption (i) implies S ⊂ ∪k,mGk,1/m so µ̄ is σ-finite.

6.9. If λ(C) = 0 then Pα(X̄n ∈ C) = 0 for all n so Pα(X̄n ∈ C,R > n) = 0
for all n and µ̄(C) = 0. To prove the converse note that if µ̄(C) = 0 then
Pα(X̄n ∈ C,R > n) = 0 for all n. Now if Pα(X̄m ∈ C) > 0 and we let M be
the smallest m for which this holds we have

Pα(X̄M ∈ C) = Pα(XM ∈ C,R > M) = 0

a contradiction so Pα(X̄m ∈ C) = 0 for all m and λ(C) = 0.

6.10. The almost sure convergence of the sum follows from Exercise 8.8 in
Chapter 1. The sum Z is a stationary distribution since obviously ξ+θZ =d Z.

6.11. To prepare for the proof we note that by considering the time of the first
visit to α

∞∑

n=1

p̄n(x, α) = Px(Tα <∞)
∞∑

m=0

p̄m(α, α) ≤
∞∑

m=0

p̄m(α, α)
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Let π̄ = πp̄. By (6.6) this is a stationary probability measure for p̄. Irreducibil-
ity and the fact that π̄ = π̄p̄n imply that π̄(α) > 0 so using our preliminary

∞ =
∞∑

n=1

π̄(α) =
∫
π̄(dx)

∞∑

n=1

p̄n(x, α) ≤
∞∑

m=0

p̄m(α, α)

and the recurrence follows from Exercise 6.1.

6.12. Induction implies

Vn = ξn + θξn−1 + · · · + θn−1ξ1 + θnV0

Yn = θnY0 → 0 in probability and

Xn
d= ξ0 + θξ1 + · · · + θn−1ξn−1 →

∞∑

n=0

θnξn

So the converging together lemma, 2.10 in Chapter 2 implies

Vn ⇒
∞∑

n=0

θnξn

6.13. (i) See the solution of 5.4.
(ii) Sn −mn = max0≤k≤n Sn − Sk

(iii) max(S0, S1, . . . , Sn) =d max(S′
0, S

′
1, . . . , S

′
n) As n→ ∞,

max(S0, S1, . . . , Sn) → max(S0, S1, S2 . . .) a.s.

6.14. Let F be the distribution of Y .

P (X − Y > x) =
∫ ∞

0

P (X > x+ y) dF (y)

= e−λx

∫ ∞

0

P (X > y) dF (y) = ae−λx



6 Ergodic Theorems

6.1. Definitions and Examples

1.1. If A ∈ I then ϕ−1(Ac) = (ϕ−1A)c = Ac so Ac ∈ I. If An ∈ I are disjoint
then

ϕ−1 (∪nAn) = ∪n ϕ
−1(An) = ∪nAn

so ∪nAn ∈ I. To prove the second claim note that the set of invariant random
variables contains the indicator functions 1A with A ∈ I and is closed under
pointwise limits, so all X ∈ I are invariant. To prove the other direction note
that if X is invariant and B ∈ R then

{ω : X(ω) ∈ B} = {ω : Xϕ(ω) ∈ B} = ϕ−1({ω : X(ω) ∈ B}

so {ω : X(ω) ∈ B} ∈ I.

1.2. (i) ϕ−1(B) = ∪∞
n=1ϕ

−n(A) ⊂ ∪∞
n=0ϕ

−n(A) = B.
(ii) ϕ−1(C) = ∩∞

n=1ϕ
−n(B) = C since ϕ−1(B) ⊂ B.

(iii) We claim that if A is almost invariant then A = B = C a.s.
To see that P (A∆B) = 0 we begin by noting that ϕ is measure preserving so

P (ϕ−n(A)∆ϕ−(n+1)(A)) = P (ϕ−1[ϕ−(n−1)(A)∆ϕ−n(A)])

= P (ϕ−(n−1)(A)∆ϕ−n(A))

Since P (A∆ϕ−1(A)) = 0 it follows by induction that

P (ϕ−n(A)∆ϕ−(n+1)(A)) = 0

for all n ≥ 0. Using the triangle inequality P (A∆C) ≤ P (A∆B) + P (B∆C) it
follows that P (A∆ϕ−n(A)) = 0. Since this holds for all n ≥ 1 and is trivial for
n = 0 we have

P (A∆B) ≤
∞∑

n=0

P (A∆ϕ−n(A)) = 0
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To see that P (B∆C) = 0 note that B −ϕ−1(B) ⊂ A−ϕ−1(A) has measure 0,
and ϕ is measure preserving so induction implies P (ϕ−n(B)−ϕ−(n+1)(B)) = 0
and we have

P
(
B − ∩∞

n=1ϕ
−n(B)

)
= 0

This shows P (B − C) = 0. Since B ⊃ C the desired conclusion follows.

Conversely, if C is strictly invariant and P (A∆C) = 0 then

P (ϕ−1A∆C) = P (ϕ−1(A∆C)) = P (A∆C) = 0

so P (ϕ−1A∆A) ≤ P (ϕ−1A∆C) + P (C∆A) = 0.

1.3. Let Ω = {0, 1}, F = all subsets, P assign mass 1/2 to each point, T (ω) =
1 − ω preserves P and clearly there are no invariant sets other than ∅ and Ω.
However T 2 is the identity and is not ergodic.

1.4. (i) Since all the xm are distinct, for some m < n ≤ N we must have
|xm − xn| ≤ 1/N . Define kj ∈ Z so that jθ = kj + xj . By considering
two cases xm < xn and xm > xn we see that either xn−m = |xn − xm| or
xn−m = 1 − |xn − xm|. In these two cases we have, for k < N ,

xk(n−m) = k|xn − xm| and xk(n−m) = 1 − k|xn − xm|

respectively. This shows that the orbit comes within 1/N of any point. Since
N is arbitrary, the desired result follows.
(ii) Let δ > 0 and ε = δP (A). Applying Exercise 3.1 to the algebra A of
finite disjoint unions of intervals [u, v), it follows that there is B ∈ A so that
P (A∆B) < ε and hence P (B) ≤ P (A)+ε. If B = +m

i=1[ui, vi) and A∩ [ui, vi) ≤
(1 − δ)|vi − ui| for all i then

P (A) ≤ (1 − δ)P (B) ≤ (1 − δ)(P (A) + ε) ≤ (1 − δ2)P (A)

a contradiction, so we must have A ∩ [ui, vi) ≥ (1 − δ)|vi − ui| for some i.
(iii) Let A be invariant and δ > 0. It follows from (ii) that there is an interval
[a, b) so that |A∩[a, b)| ≥ (1−δ)(b−a). If 1/(n+1) < b−a < 1/n then there are
y1, . . . , yn so that Bk = ([a, b] + yk) mod 1 are disjoint. Since the xn are dense,
we can find nk so that Bk = ([a, b] + xnk

) mod 1 are disjoint. The invariance
of A implies that (A + xn) mod 1 ⊂ A. Since |A ∩ [a, b]| > (1 − δ)(b − a), it
follows that

|A| ≥ n(b− a)(1 − δ) ≥ n

n+ 1
(1 − δ)

Since n and δ are arbitrary the desired result follows.
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1.5. If f(x) =
∑

k cke
2πkx then

f(ϕ(x)) =
∑

k

cke
2πi2kx

The uniqueness of the Fourier coefficients implies ck = c2k. Iterating we see
ck = c2jk, so if ck 6= 0 for some k 6= 0 then we cannot have

∑
k c

2
k <∞

1.6. From the definition it is clear that

µ ◦ ϕ−1[a, b] =
∞∑

n=1

µ

([
1

n+ b
,

1
n+ a

])

=
∞∑

n=1

ln
(
n+ a+ 1
n+ a

)
− ln

(
n+ b+ 1
n+ b

)

since
∫ v

u dx/(1 + x) = ln(1 + v) − ln(1 + u). If we replace ∞ by N the sum is

ln
(
N + a+ 1
N + b+ 1

)
+ ln(1 + b) − ln(1 + a)

As N → ∞ the right-hand side converges to µ([a, b]).

1.7. To check stationarity, we let j > n and note that for any i, Zi, Zi+1, . . . , Zi+j

consists of a partial block with a length that is uniformly distributed on 1, . . . n,
then a number of full blocks of length n and then a partial block n.

To check ergodicity we note that the tail σ-field of the Zm is contained in that
of the block process, which is trivial since it is i.i.d.

6.2. Birkhoff’s Ergodic Theorem

2.1. Let X ′
M and X ′′

M be defined as in the proof of (2.1). The bounded conver-
gence theorem implies

E

∣∣∣∣∣
1
n

n−1∑

m=0

X ′
M (ϕmω) −E(X ′

M |I)

∣∣∣∣∣

p

→ 0

Writing ‖Z‖p = (E|Z|p)1/p and using the triangle inequality
∥∥∥∥

1
n

n−1∑

m=0

X ′′
M (ϕmω) −E(X ′′

M |I)
∥∥∥∥

p

≤
∥∥∥∥

1
n

n−1∑

m=0

X ′′
M (ϕmω)

∥∥∥∥
p

+ ‖E(X ′′
M |I)‖p

≤ 1
n

n−1∑

m=0

‖X ′′
M (ϕmω)‖p + ‖E(X ′′

M |I)‖p ≤ 2‖X ′′
M‖p
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since E|X ′′
M (ϕmω)|p = E|X ′′

M |p and E|E(X ′′
M |I)|p ≤ E|X ′′

M |p by (1.1e) in
Chapter 4.

2.2. (i) Let hM (ω) = supm≥M |gm(ω) − g(ω)|.

lim sup
n→∞

1
n

n−1∑

m=0

gm(ϕmω) ≤ lim
n→∞

1
n

n−1∑

m=0

(g + hN )(ϕmω)

= E(g + hM |I)

since gm ≤ g + hM for all m ≥ M . hM ↓ 0 as M ↑ ∞ and h0 is integrable, so
(1.1c) in Chapter 4 implies E(g + hM |I) ↓ E(g|I).

(ii) The triangle inequality and the convergence of gm → g in L1 imply

E

∣∣∣∣∣
1
n

n−1∑

m=0

gm(ϕmω) − 1
n

n−1∑

m=0

g(ϕmω)

∣∣∣∣∣ ≤
1
n

n−1∑

m=0

E|gm − g| → 0

The ergodic theorem implies

E

∣∣∣∣∣
1
n

n−1∑

m=0

g(ϕmω) −E(g|I)

∣∣∣∣∣→ 0

Combining the last two results and using the triangle inequality gives the desired
result.

2.3. Let X ′
M and X ′′

M be defined as in the proof of (2.1). The result for bounded
random variables implies

1
n

n−1∑

m=0

X ′
M (ϕmω) → E(X ′

M |I)

Using (2.3) now on X ′′
M we get

P

(
sup

n

∣∣∣∣∣
1
n

n−1∑

m=0

X ′′
M (ϕmω)

∣∣∣∣∣ > α

)
≤ α−1E|X ′′

M |

As M ↑ ∞, E|X ′′
M | ↓ 0. A trivial special case of (5.9) in Chapter 4 implies

E(X ′
M |I) → E(X |I) so

P

(
lim sup

n→∞

1
n

n−1∑

m=0

X(ϕmω) > E(X |I) + 2α

)
= 0
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Since the last result holds for any α > 0 the desired result follows.

6.3. Recurrence

3.1. Counting each point visited at the last time it is visited in {1, . . . , n}

ERn =
n∑

m=1

P (Sm+1 − Sm 6= 0, . . . , Sn − Sm 6= 0) =
n∑

m=1

gm−1

3.2. When P (Xi > 1) = 0

{
1, . . . ,max

m≤n
Sm

}
⊂ Rn ⊂

{
min
m≤n

Sm, . . . ,max
m≤n

Sm

}

If EXi > 0 then Sn/n→ EXi > 0 so Sn → ∞ and minm≤n Sm > −∞ a.s. To
evaluate the limit of maxm≤n Sm/n we observe that for any K

lim
n→∞

Sn

n
≤ lim inf

n→∞

(
max

1≤k≤n
|Sk|/n

)
≤ lim sup

n→∞

(
max

1≤k≤n
|Sk|/n

)

= lim sup
n→∞

(
max

K≤k≤n
|Sk|/n

)
≤
(

max
k≥K

|Sk|/k
)

3.3. ϕ(θ) = E exp(θXi) is convex, ϕ(θ) → ∞ as θ → −∞ and the left derivative
at 0 has ϕ′(0) = EXi > 0 so there is a unique θ < 0 so that ϕ(θ) = 1. Exercise
7.4 in Chapter 4 implies that exp(θSn) is a martingale. (4.1) in Chapter 4
implies 1 = E exp(θSN∧n). Since exp(θSN∧n) ≤ e−θ and Sn → ∞ as n → ∞
the bounded convergence theorem implies 1 = e−θP (N <∞).

3.4. It suffices to show

E

( ∑

1≤m≤T1

1(Xm∈B);X0 ∈ A

)
= P (X0 ∈ B)

To do this we observe that the left hand side is

∞∑

m=1

P (X0 ∈ A,X1 6∈ A, . . . , Xm−1 6∈ A,Xm ∈ B)

=
∞∑

m=1

P (X−m ∈ A,X−m+1 6∈ A, . . . , X−1 6∈ A,X0 ∈ B) = P (X0 ∈ B)
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3.5. First note that (3.3) implies ĒT1 = 1/P (X0 = 1), so the right hand side is
P (X0 = 1, T1 ≥ n). To compute the left now we break things down according
to the position of the first 1 to the left of 0 and use translation invariance to
conclude P (T1 = n) is

=
∞∑

m=0

P (X−m = 1, Xj = 0 for j ∈ (−m,n), Xn = 1)

=
∞∑

m=0

P (X0 = 1, Xj = 0 for j ∈ (0,m+ n), Xm+n = 1)

= P (X0 = 1, T1 ≥ n)

6.6. A Subadditive Ergodic Theorem

6.1. (1.3) implies that the stationary sequences in (ii) are ergodic. Exercise 3.1
implies EX0,n =

∑n
m=1 P (S1 6= 0, . . . , Sn 6= 0). Since P (S1 6= 0, . . . , Sn 6= 0) is

decreasing it follows easily that EX0,n/n→ P ( no return to 0 ).

6.2. (a) EL1 = P (X1 = Y1) = 1/2. To compute EL2 let N2 = |{i ≤ 2 :
Xi = Yi} and note that L2 − N2 = 0 unless (X1, X2, Y1, Y2) is (1, 0, 0, 1) or
(0, 1, 1, 0). In these two cases which have probability 1/16 each L2 −N2 = 1 so
EL2 = EN2 + 1/8 = 9/8 so EL2/2 = 9/16
(b) The expected number of sequences of length K is

(
n
K

)22−K . Taking K = an

using Stirling’s formula m! ∼ mme−m
√

2πm without the term under the square
root we have that the above

≈ n2n2−an

(an)2an((1 − a)n)2(1−a)n
= (a2a(1 − a)2(1−a)2a)−n

From the last computation it follows that

1
n

log

((
n

na

)2

2−na

)
→ −2a loga− 2(1 − a) log(1 − a) − a log 2

When a = 1 the right hand side is − log 2 < 0. By continuity it is also negative
for a close to 1.
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6.7. Applications

7.1. It is easy to see that

E(X1 + Y1) =
∫ ∞

0

P (X1 + Y1 > t) dt =
∫ ∞

0

e−t2/2 dt =
√
π/2

Symmetry implies EX1 = EY1 =
√
π/8. The law of large numbers implies

Xn/n, Yn/n →
√
π/8. Since (X1, Y1), (X2, Y2), . . . is increasing the desired

results follows.

7.2. Since there are
(
n
k

)
subsets and each is in the correct order with probability

1/k! we have

EJn
k ≤

(
n

k

)/
k! ≤

nk

(k!)2
≈

√
n

2k

k2ke−2k

where in the last equality we have used Stirling’s formula without the
√
k term.

Letting k = α
√
n we have

1√
n

logEJn
k → −2α logα+ 2α < 0

when α > e.

7.3. It is immediate from the definition that EY1 = 1. Grouping the individuals
in generation n+1 according to their parents in generation n and using EY1 = 1
it is easy to see that this is a martingale. Since Yn is a nonnegative martingale
Yn → Y < ∞. However, if exp(−θa)/µϕ(θ) = b > 1 and X0,n ≤ an then
Yn ≥ bn so this cannot happen infinitely often.

7.4. Let km be the integer so that t(km,−m) = am. Let Xm,n be the amount
of time it takes water starting from (km,−m) to reach depth n. It is clear
that X0,m + Xm,n ≥ X0,n Since EX+

0,1 < ∞ and Xm,n ≥ 0 (iv) holds. (6.1)
implies that X0,n/n→ X a.s. To see that the limit is constant, enumerate the
edges in some order (e.g., take each row in turn from left to right) e1, e2, . . . and
observe thatX is measurable with respect to the tail σ-field of the i.i.d. sequence
τ(e1), τ(e2), . . ..

7.5. (i) a1 is the minimum of two mean one exponentials so it is a mean 1/2
exponential. (ii) Let Sn be the sum of n independent mean 1 exponentials.
Results in Section 1.9 imply that for a < 1

1
n

logP (Sn ≤ na) → −a+ 1 + log a

Since there are 2n paths down to level n, we see that if f(a) = log 2 − a+ 1 +
log a < 0 then γ ≤ a. Since f is continuous and f(1) = log 2 this must hold for
some a < 1.



7 Brownian Motion

7.1. Definition and Construction

1.1. Let A = {A = {ω : (ω(t1), ω(t2), . . .) ∈ B} : B ∈ R{1,2,...}}. Clearly, any
A ∈ A is in the σ-field generated by the finite dimensional sets. To complete
the proof, we only have to check that A is a σ-field. The first and easier step is
to note if A = {ω : (ω(t1), ω(t2), . . .) ∈ B} then Ac = {ω : (ω(t1), ω(t2), . . .) ∈
Bc} ∈ A. To check that A is closed under countable unions, let An = {ω :
(ω(tn1 ), ω(tn2 ), . . .) ∈ Bn}, let t1, t2, . . . be an ordering of {tnm : n,m ≥ 1} and
note that we can write An = {ω : (ω(t1), ω(t2), . . .) ∈ En} so ∪nAn = {ω :
(ω(t1), ω(t2), . . .) ∈ ∪nEn} ∈ A.

1.2. Let An = {ω : there is an s ∈ [0, 1] so that |Bt − Bs| ≤ C|t − s|γ when
|t− s| ≤ k/n}. For 1 ≤ i ≤ n− k + 1 let

Yi,n = max
{∣∣∣∣B

(
i+ j

n

)
−B

(
i+ j − 1

n

)∣∣∣∣ : j = 0, 1, . . . k − 1
}

Bn = { at least one Yi,n is ≤ (2k − 1)C/nγ}

Again An ⊂ Bn but this time if γ > 1/2 + 1/k

P (Bn) ≤ nP (|B(1/n)| ≤ (2k − 1)C/nγ)k

≤ nP (|B(1)| ≤ (2k − 1)Cn1/2−γ)k

≤ C ′nk(1/2−γ)+1 → 0

1.3. The first step is to observe that the scaling relationship (1.2) implies

(?) ∆m,n
d= 2−n/2∆1,0
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while the definition of Brownian motion shows E∆2
1,0 = t, and E(∆2

1,0 − t)2 =
C < ∞. Using (?) and the definition of Brownian motion, it follows that if
k 6= m then ∆2

k,n − t2−n and ∆2
m,n − t2−n are independent and have mean 0 so

E


 ∑

1≤m≤2n

(∆2
m,n − t2−n)




2

=
∑

1≤m≤2n

E
(
∆2

m,n − t2−n
)2

= 2nC2−2n

where in the last equality we have used (?) again. The last result and Cheby-
shev’s inequality imply

P



∣∣∣∣∣∣
∑

1≤m≤2n

∆2
m,n − t

∣∣∣∣∣∣
≥ 1/n


 ≤ Cn22−n

The right hand side is summable so the Borel Cantelli lemma (see e.g. (6.1) in
Chapter 1 of Durrett (1991)) implies

P



∣∣∣∣∣∣
∑

m≤2n

∆2
m,n − t

∣∣∣∣∣∣
≥ 1/n infinitely often


 = 0

7.2. Markov Property, Blumenthal’s 0-1 Law

2.1. Let Y = 1(T0>t) and note that T0 ◦ θ1 = R− 1 so Y ◦ θ1 = 1(R>1+t). Using
the Markov property gives

Px(R > 1 + t|F1) = PB1(T0 > t)

Taking expected value now and recalling Px(B1 = y) = p1(x, y) gives

Px(R > 1 + t) =
∫
p1(x, y)Py(T0 > t) dy

2.2. Let Y = 1(T0>1−t) and note that Y ◦ θt = 1(L≤t). Using the Markov
property gives

P0(L ≤ t|Ft) = PBt(T0 > 1 − t)

Taking expected value now and recalling P0(Bt = y) = pt(0, y) gives

P0(L ≤ t) =
∫
pt(0, y)Py(T0 > 1 − t) dy
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2.3. (2.6), (2.7), and the Markov property imply that with probablity one there
are times s1 > t1 > s2 > t2 . . . that converge to a so that B(sn) = B(a) and
B(tn) > B(a). In each interval (sn+1, sn) there is a local maximum.

2.4. (i) Z ≡ lim supt↓0B(t)/f(t) ∈ F+
0 so (2.7) implies P0(Z > c) ∈ {0, 1} for

each c, which implies that Z is constant almost surely.
(ii) Let C < ∞, tn ↓ 0, AN = {B(tn) ≥ C

√
tn for some n ≥ N} and A =

∩NAN . A trivial inequality and the scaling relation (1.2) implies

P0(AN ) ≥ P0(B(tN ) ≥ C
√
tN ) = P0(B(1) ≥ C) > 0

Letting N → ∞ and noting AN ↓ A we have P0(A) ≥ P0(B1 ≥ C) > 0. Since
A ∈ F+

0 it follows from (2.7) that P0(A) = 1, that is, lim supt→0 B(t)/
√
t ≥ C

with probability one. Since C is arbitrary the proof is complete.

7.3. Stopping Times, Strong Markov Property

3.1. If m2−n < t ≤ (m+ 1)2−n then {Sn < t} = {S < m2−n} ∈ Fm2−n ⊂ Ft.

3.2. Since constant times are stopping times the last three statements follow
from the first three.
{S ∧ T ≤ t} = {S ≤ t} ∪ {T ≤ t} ∈ Ft.
{S ∨ T ≤ t} = {S ≤ t} ∩ {T ≤ t} ∈ Ft

{S + T < t} = ∪q,r∈Q:q+r<t{S < q} ∩ {T < r} ∈ Ft

3.3. Define Rn by R1 = T1, Rn = Rn−1 ∨ Tn. Repeated use of Exercise 3.2
shows that Rn is a stopping time. As n ↑ ∞ Rn ↑ supn Tn so the desired result
follows from (3.3).

Define Sn by S1 = T1, Sn = Sn−1 ∧ Tn. Repeated use of Exercise 3.2 shows
that Sn is a stopping time. As n ↑ ∞ Sn ↓ infn Tn so the desired result follows
from (3.2).

lim supn Tn = infn supm≥n Tm and lim infn Tn = supn infm≥n Tm so the last
two results follow easily from the first two.

3.4. First if A ∈ FS then

A ∩ {S < t} = ∪n (A ∩ {S ≤ t− 1/n}) ∈ Ft

On the other hand if A ∩ {S < t} ∈ Ft and the filtration is right continuous
then

A ∩ {S ≤ t} = ∩n (A ∩ {S < t+ 1/n}) ∈ ∩n Ft+1/n = Ft

3.5. {R ≤ t} = {S ≤ t} ∩ A ∈ Ft since A ∈ FS
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3.6. (i) Let r = s ∧ t.

{S < t} ∩ {S < s} = {S < r} ∈ Fr ⊂ Fs

{S ≤ t} ∩ {S ≤ s} = {S ≤ r} ∈ Fr ⊂ Fs

This shows {S < t} and {S ≤ t} are in FS . Taking complements and inter-
estions we get {S ≥ t}, {S > t}, and {S = t} are in FS .

(ii) {S < T}∩{S < t} = ∪q<t{S < q}∩{T > q} ∈ Ft by (i), so {S < T} ∈ FS .
{S < T}∩{T < t} = ∪q<t{S < q}∩{q < T < t} ∈ Ft by (i), so {S < T} ∈ FT .
Here the unions were taken over rational q. Interchanging the roles of S and
T we have {S > T} in FS ∩ FT . Taking complements and interestions we get
{S ≥ T}, {S ≤ T}, and {S = T} are in FS ∩ FT .

3.7. If A ∈ R then

{B(Sn) ∈ A} ∩ {Sn ≤ t} = ∪0≤m≤2nt{Sn = m/2n} ∩ {B(m/2n) ∈ A} ∈ Ft

by (i) of Exercise 3.6. This shows {B(Sn) ∈ A} ∈ FSn so B(Sn) ∈ FSn . Letting
n→ ∞ and using (3.6) we have BS = limnB(Sn) ∈ ∩nFSn = FS .

7.4. Maxima and Zeros

4.1. (i)Let Ys(ω) = 1 if s < t and u < ω(t− s) < v, 0 otherwise. Let

Ȳs(ω) =
{

1 if s < t, 2a− v < ω(t− s) < 2a− u
0 otherwise

Symmetry of the normal distribution implies EaYs = EaȲs, so if we let S =
inf{s < t : Bs = a} and apply the strong Markov property then on {S <∞}

Ex(YS ◦ θS |FS) = EaYS = EaȲS = Ex(ȲS ◦ θS |FS)

Taking expected values now gives the desired result.
(ii) Letting Mt = max0≤s≤tBs we can rewrite (4.7) as

P0(Mt > a, u < Bt < v) = P0(2a− v < Bt < 2a− u)

Letting the interval (u, v) shrink to x we see that

P0(Mt > a,Bt = x) = P0(Bt = 2a− x) =
1√
2πt

e−(2a−x)2/2t
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Differentiating with respect to a now we get the joint density

P0(Mt = a,Bt = x) =
2(2a− x)√

2πt3
e−(2a−x)2/2t

4.2. We begin by noting symmetry and Exercise 2.1 imply

P0(R ≤ 1 + t) = 2
∫ ∞

0

p1(0, y)
∫ t

0

Py(T0 = s) ds dy

=
∫ t

0

2
∫ ∞

0

p1(0, y)Py(T0 = s) dy ds

by Fubini’s theorem, so the integrand gives the density P0(R = 1 + t). Since
Py(T0 = t) = P0(Ty = t), (4.7) gives

P0(R = 1 + t) = 2
∫ ∞

0

1√
2π
e−y2/2 1√

2πt3
ye−y2/2t dy

=
1

2πt3/2

∫ ∞

0

ye−y2(1+t)/2t dy =
1

2πt3/2

t

(1 + t)

7.5. Martingales

5.1. It follows from (5.6) that

cosh(θBt)e−θ2t/2 =
1
2
{
exp(θBt − θ2t/2) + exp(−θBt − (−θ)2t/2)

}

is a martingale. (5.1) and this imply

1 = E0

(
cosh(BT∧t)e−θ2(T∧t)/2

)

Letting t→ ∞ and using the bounded convergence theorem we have

1 = cosh(a)E0

(
e−θ2T/2

)

5.2. It follows from (5.1) and (5.6) that

1 = E0 exp(θBτ∧t − θ2(τ ∧ t)/2)
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θ = b+
√
b2 + 2λ is the larger root of θb− θ2/2 = −λ and BT∧t ≤ a+ b(T ∧ t)

so using the bounded convergence theorem we have

1 = E0

(
exp(θ(a+ bτ) − θ2τ/2); τ <∞

)

Substituting in the value of θ and rearranging gives the desired result.

5.3. (i) Ta = σ when Ta < Tb and Ta = σ + Ta ◦ θσ when Tb < Ta. Using the
defintion of conditional expectation and (1.3) in Chapter 4 we have

Ex

(
e−λTa ;Tb < Ta

)
= Ex

(
Ex

(
e−λ(σ+Ta◦θσ

∣∣∣Fσ

)
;Tb < Ta

)

= Ex

(
e−λσEx

(
e−λTa ◦ θσ

∣∣Fσ

)
;Tb < Ta

)

Since Bσ = b on Tb < Ta, the strong Markov property implies

Ex

(
e−λTa ◦ θσ

∣∣Fσ

)
= Eb

(
e−λTa

)

and completes the proof of the formula.

(ii) Letting u = Ex(e−λσ ;Ta < Tb) and v = Ex(e−λσ ;Tb < Ta) then using (4.4)
we can write the equations as

exp(−(x− a)
√

2λ) = u+ v exp(−(b− a)
√

2λ)

exp(−(b− x)
√

2λ) = v + u exp(−(b− a)
√

2λ)

Multiplying the first equation by exp((b − a)
√

2λ) and subtracting the second
gives

sinh((b− x)
√

2λ) = sinh((b− a)
√

2λ)u

One can solve for v in a similar way.

5.4. (5.1) and (5.8) imply

E(B(U ∧ t)4 − 6(U ∧ t)B(U ∧ t)2) = −3E(U ∧ t)2

By putting (a, b) inside a larger symmetric interval and using (5.5) we get
EU < ∞. Letting t → ∞, using the dominated convergence theorem on the
left hand side, and the monotone convergence theorem on the right givesE(B4

U−
6UB2

U ) = −3EU2 so using Cauchy-Schwarz

EU2 ≤ 2EUB2
U ≤ 2

(
EU2

)1/2 (
EB4

U

)1/2

and it follows that EU2 ≤ 4EB4
U .



104 Chapter 7 Brownian Motion

5.5. pt(x, y) = (2πt)−1/2e−(y−x)2/2t. Differentiating gives

∂pt

∂t
= −1

2
(2π)−1/2t−3/2e−(y−x)2/2t + (2πt)−1/2e−(y−x)2/2t (y − x)2

2t2
∂pt

∂y
= (2πt)−1/2e−(y−x)2/2t · −

(y − x)
t

∂2pt

∂y2
= (2πt)−1/2e−(y−x)2/2t (y − x)2

t2
+ (2πt)−1/2e−(y−x)2/2t · −1

t

so
∂pt/∂t = (1/2)∂2pt∂y

2

To check the second claim note that

∂

∂t
(pt(x, y)u(t, y)) = u(t, y)

∂

∂t
pt(x, y) + pt(x, y)

∂

∂t
u(t, y)

= u(t, y)
1
2
∂2

∂y2
pt(x, y) + pt(x, y)

∂

∂t
u(t, y)

Integrating by parts twice in the first term results in
∫
pt(x, y)

(
1
2
∂2

∂y2
u(t, y) +

∂

∂t
u(t, y)

)
dy = 0

5.6. If we let u(t, x) = x6 − atx4 + bt2x2 − ct3 then

∂u

∂x
= 6x5 − 4atx3 + 2bt2x

∂2u

∂x2
= 30x4 − 12atx2 + 2bt2

∂u

∂t
= −ax4 + 2btx2 − 3ct2

To have ∂u/∂t = − 1
2∂

2u/∂x2 we need

−a+ 15 = 0 2b− 6a = 0 − 3c+ b = 0

i.e., a = 15, b = 45, c = 15. Using (5.1) we have

E
(
B6

T∧t − 15(T ∧ t)B4
T∧t + 45(T ∧ t)2B2

T∧t

)
= 15E(T ∧ t)3

From (5.5) and (5.9) we know ET = a2 and ET 2 = 5a4/3 < ∞. Using
the dominated convergence theorem on the left and the monotone convergence
theorem on the right, we have

a6

(
1 − 15 + 45 · 5

3

)
= 15ET 3
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so ET 3 = 61/15.

5.7. u(t, x) = (1 + t)−1/2 exp(x2
t /(1 + t)) = (2π)1/2p1+t(0, ix) where i =

√
−1

so ∂u/∂t+ (1/2)∂2u/∂x2 = 0 and Exercise 5.5 implies u(t, Bt) is a martingale.
Being a nonnegative martingale it must converge to a finite limit a.s. However,
if we let xt = Bt/((1 + t) log(1 + t))1/2 then

(1 + t)−1/2 exp(B2
t /(1 + t)) = (1 + t)−1/2 exp(x2

t log(1 + t))

so we cannot have x2
t ≥ 1/2 i.o.

7.6. Donsker’s Theorem

6.1. Exercise 5.4 implies ET 2
u,v ≤ C

∫
x4 µu,v(dx) so using a computation after

(6.2)

E
(
T 2

U,V

)
≤ CE

∫
x4 µU,V (dx) = CEX4

6.2. ϕ(ω) = max0≤s≤1 ω(s) − min0≤s≤1 ω(s) is continuous so (∗) implies

1√
n

(
max

0≤m≤n
Sm − min

0≤m≤n
Sm

)
⇒ max

0≤s≤1
Bs − min

0≤s≤1
Bs

6.3. (i) Clearly (1/n)
∑n

m=1B(m/n)−B((m−1)/n) has a normal distribution.
The sums converges a.s. and hence in distribuiton to

∫ 1

0
Bt dt, so by Exercise

3.9 the integral has a normal distribution. To compute the variance, we write

E

(∫ 1

0

Bt dt

)2

= E

(∫ 1

0

∫ 1

0

BsBt dt ds

)

= 2
(∫ 1

0

∫ 1

s

E(BsBt) dt ds
)

= 2
∫ 1

0

∫ 1

s

s dt ds

= 2
∫ 1

0

s(1 − s) ds = 2
(
s2

2
− s3

3

)∣∣∣∣
1

0

=
1
3

(ii) Let Xn,m = (n+ 1 −m)Xm/n
3/2. EXn,m = 0 and

n∑

m=1

EX2
n,m = n−3

n∑

k=1

j2 → 1/3
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To check (ii) in (4.5) in Chapter 2 now, we observe that if 1 ≤ m ≤ n

E
((
n−3/2(n+ 1 −m)Xm/n

3/2
)2

;
∣∣∣n−3/2(n+ 1 −m)Xm/n

3/2
∣∣∣ > ε

)

≤
1
n
E
(
X2

1 ; |X1| > ε
√
n
)

so the sum in (ii) is ≤ E(X2
1 ; |X1| > ε

√
n) → 0 by dominated convergence.

7.7. CLT’s for Dependent Variables

7.1. On {ζn = i} we have

E(Xn+1|Gn) =
∫
x dHi(x) = 0

E(X2
n+1|Gn) =

∫
x2 dHi(x) = σ2

i

The ergodic theorem for Markov chains, Example 2.2 in Chapter 6 (or Exercise
5.2 in Chapter 5) implies that

n−1
n∑

m=1

σ2(Xm) →
∑

x

σ2(x)π(x) a.s.

7.2. Let µ = P (ηn = 1) and let Xn = ηn − 1/4. Since Xn is 1-dependent, the
formula in Example 7.1 implies σ2 = EX2

0 + 2E(X0X1). EX2
0 = var(η0) =

(1/4)(3/4) since η0 is Bernoulli(1/4). For the other term we note

EX0X1 = E [(η0 − 1/4)(η1 − 1/4)] = −1/16

since EZ0Z1 = 0 and EZi = 1/4. Combining things we have σ2 = 2/16.
To identify Y0 we use the formula from the proof and the fact that X1 is
independent of F−1, to conclude

Y0 = X0 −E(X0|F−1) +E(X1|F0) −EX1

= 1(ξ0=H,ξ1=T ) −
1
2
1(ξ0=H) +

1
2
1(ξ1=H) − 1/4

7.3. The Markov property implies

E(X0|F−n) =
∑

j

pn−1(ζ−n, j)µj
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Since Markov chain is irreducible with a finite state space, combining Exercise
5.10 with fact that

∑
i π(i)µi = 0 shows there are constants 0 < γ,C < ∞ so

that

sup
i

∣∣∣∣∣∣
∑

j

pn−1(i, j)µj

∣∣∣∣∣∣
≤ Ce−γn

7.8. Empirical Distributions, Brownian Bridge

8.1. Exercise 4.1 implies that

P

(
max
0≤t≤1

Bt > b,−ε < B1 < ε

)
= P (2b− ε < B1 < 2b+ ε)

Since P (|B1| < ε) ∼ 2ε · (2π)−1/2 it follows that

P

(
max
0≤t≤1

Bt > b

∣∣∣∣− ε < B1 < ε

)
→ e−(2b2)/2

7.9. Laws of the Iterated Logarithm

9.1. Letting f(t) = 2(1 + ε) log log log t and using a familar formula from the
proof of (9.1)

P0(Btk
> (tkf(tk))1/2) ∼ κf(tk)−1/2 exp(−(1 + ε) log k)

The right-hand side is summable so

lim sup
k→∞

Btk
/(2tk log log log tk)1/2 ≤ 1

For a bound in the other direction take g(t) = 2(1−ε) log log log t and note that

P0(Btk
−Btk−1 > ((tk − tk−1)g(tk))1/2) ∼ κg(tk)−1/2 exp(−(1 − ε) log k)

The sum of the right-hand side is ∞ and the events on the left are independent
so

P0

(
Btk

−Btk−1 > ((tk − tk−1)g(tk))1/2 i.o.
)

= 1

Combining this with the result for the lim sup and noting tk−1/tk → 0 the
desired result follows easily.
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9.2. E|Xi|α = ∞ implies
∑∞

m=1 P (|Xi| > Cn1/α) = ∞ for any C. Using
the second Borel-Cantelli now we see that lim supn→∞ |Xn|/n1/α ≥ C, i.e., the
lim sup = ∞. Since max{|Sn|, |Sn−1|} ≥ |Xn|/2 it follows that lim supn→∞ Sn/n

1/α =
∞.

9.3. (9.1) implies that

lim sup
n→∞

Sn/(2n log logn)1/2 = 1 lim inf
n→∞

Sn/(2n log logn)1/2 = −1

so the limit set is contained in [−1, 1]. On the other hand

∞∑

m=1

P (Xn > ε
√
n) <∞

for any ε so Xn/
√
n→ 0. This shows that the differences (Sn+1 −Sn)/

√
n→ 0

so as Sn/(2n log logn)1/2 wanders back and forth between 1 and −1 it fills up
the entire interval.



Appendix: Measure Theory

A.1. Lebesgue-Stieltjes Measures

1.1. (i) If A,B ∈ ∪iFi then A,B ∈ Fn for some n, so Ac, A ∪ B ∈ Fn.
(ii) Let Ω = [0, 1), Fn = σ({[m/2n, (m + 1)/2n), 0 ≤ m < 2n}. σ(∪iFi) = the
Borel subsets of [0, 1) but [0, 1/3) 6∈ ∪iFi.

1.2. If A has asymptotic density θ then Ac has asymptotic density 1− θ. How-
ever, A is not closed under unions. To prove this note that if A has the property
that |{2k−1, 2k}∩A| = 1 for all integers k then A has asymptotic density 1/2.
Let A consist of the odd integers between (2k − 1)! and (2k)! and the even
integers between (2k)! and (2k + 1)!. Let B = 2Z. Then

lim sup
n→∞

|(A ∪ B) ∩ {1, 2, . . . n}|/n = 1

lim inf
n→∞

|(A ∪ B) ∩ {1, 2, . . . n}|/n = 1/2

1.3. (i) B = A+ (B −A) so µ(B) = µ(A) + µ(B −A) ≥ µ(A).
(ii) Let A′

n = An ∩ A, B1 = A′
1 and for n > 1, Bn = A′

n − ∪n−1
m=1(A

′
m)c. Since

the Bn are disjoint and have union A we have using (i) and Bm ⊂ Am

µ(A) =
∞∑

m=1

µ(Bm) ≤
∞∑

m=1

µ(Am)

(iii) Let Bn = An − An−1. Then the Bn are disjoint and have ∪∞
m=1Bm = A,

∪n
m=1Bm = An so

µ(A) =
∞∑

m=1

µ(Bm) = lim
n→∞

n∑

m=1

µ(Bm) = lim
n→∞

µ(An)

(iv) A1−An ↑ A1−A so (iii) implies µ(A1−An) ↑ µ(A1−A). Since µ(A1−B) =
µ(A1) − µ(B) it follows that µ(An) ↓ µ(A).
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1.4. µ(Z) = 1 but µ({n}) = 0 for all n and Z = ∪n{n} so µ is not countably
additive on σ(A).

1.5. By fixing the sets in coordinates 2, . . . , d it is easy to see σ(Rd
o) ⊃ R×Ro×

Ro and iterating gives the desired result.

A.2. Carathéodary’s Extension Theorem

2.1. Let C = {{1, 2}, {2, 3}}. Let µ be counting measure. Let ν(A) = 2 if 2 ∈ A,
0 otherwise.

A.3. Completion, etc

3.1. By (3.1) there are Ai ∈ A so that ∪iAi ⊃ B and
∑

i µ(Ai) ≤ µ(B) + ε/2.
Pick I so that

∑
i>I µ(Ai) < ε/2, and let A = ∪i≤IAi. Since B ⊂ ∪iAi, we

have B − A ⊂ ∪i>IAi and hence µ(B − A) ≤ µ(∪i>IAi) ≤ ε/2. To bound
the other difference we note that A − B ⊂ (∪iAi) − B and ∪iAi ⊃ B so
µ(A−B) ≤ µ(∪iAi) − µ(B) ≤ ε/2.

3.2. (i) For each rational r, let Er = r +′ Dq. The Er are disjoint subsets of
(0, 1], so

∑
r µ(Er) ≤ 1 but we have µ(Er) = µ(Dq), so µ(Dq) = 0.

(ii) By translating A we can suppose without loss of generality that µ(A ∩
(0, 1]) > 0. For each rational q let Aq = A∩Bq. If every Aq is measurable then
µ(Aq) = 0 by (i) and µ(A ∩ (0, 1]) =

∑
q µ(Aq) = 0 a contradicition.

3.3. Write the rotated rectangle B as {(x, y) : a ≤ x ≤ b, f(x) ≤ y ≤ g(x)}
where f and g are piecewise linear. Subdividing [a, b] into n equal pieces, using
the upper Riemann sum for g and the lower Riemann sum for f , then letting
n→ ∞ we conclude that λ∗(B) = λ(A).

(ii) By covering D with the appropriate rotations and translations of sets used
to cover C, we conclude λ∗(D) ≤ λ∗(C). Interchanging the roles of C and D
proves that equality holds.

A.4. Integration

4.1. Let Aδ = {x : f(x) > δ} and note that Aδ ↑ A0 as δ ↓ 0. If µ(A0) > 0 then
µ(Aδ) > 0 for some δ > 0. If µ(Aδ) > 0 then µ(Aδ ∩ [−m,m]) > 0 for some m.
Letting h(x) = δ on Aδ ∩ [−m,m] and 0 otherwise we have

∫
f dµ ≥

∫
h dµ = δµ(Aδ ∩ [−m,m]) > 0
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a contradiction.

4.2. Let g =
∑∞

m=1
m
2n 1En,m Since g ≤ f , (iv) in (4.5) implies

∞∑

m=1

m

2n
µ(En,m) =

∫
g dµ ≤

∫
f dµ

lim sup
n→∞

∞∑

m=1

m

2n
µ(En,m) ≤

∫
f dµ

For the other inequality let h be the class used to define the integral. That is,
0 ≤ h ≤ f , h is bounded, and H = {x : h(x) > 0} has µ(H) <∞.

g +
1
2n

1H ≥ f1H ≥ h

so using (iv) in (4.5) again we have

1
2n
µ(H) +

∞∑

m=1

m

2n
µ(En,m) ≥

∫
h dµ

Letting n→ ∞ now gives

lim inf
n→∞

∞∑

m=1

m

2n
µ(En,m) ≥

∫
h dµ

Since h is an aribitrary member of the defining class the desired result follows.

4.3. Since
∫

|g − (ϕ− ψ)| dµ ≤
∫

|g+ − ϕ| dµ+
∫

|g− − ψ| dµ

it suffices to prove the result when g ≥ 0. Using Exercise 4.2, we can pick
n large enough so that if En,m = {x : m/2n ≤ f(x) < (m + 1)/2n} and
h(x) =

∑∞
m=1(m/2

n)1En,m then
∫
g − h dµ < ε/2. Since

∞∑

n=1

m

2n
µ(En,m) =

∫
h dµ ≤

∫
g dµ <∞

we can pick M so that
∑

m>M
m
2nµ(En,m) < ε/2. If we let

ϕ =
M∑

m=1

m

2n
1En,m
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then
∫
|g − ϕ| dµ =

∫
g − h dµ+

∫
h− ϕdµ < ε.

(ii) Pick Am that are finite unions of open intervals so that |Am∆En,m| ≤ εM−2

and let

q(x) =
M∑

m=1

m

2n
1Am

Now the sum above is =
∑k

j=1 cj1(aj−1,aj) almost everywhere (i.e., except at
the end points of the intervals) for some a0 < a1 < · · · < ak and cj ∈ R.

∫
|ϕ− q| dµ ≤

M∑

m=1

m

2n
µ(Am∆En,m) ≤ ε

2n

(iii) To make the continuous function replace each cj1(aj−1,aj) by a function rj
that is 0 on (aj−1, aj)c, cj on [aj−1 + δj , aj − δj ], and linear otherwise. If we
let r(x) =

∑k
j=1 rj(x) then

∫
|q(x) − r(x)| =

k∑

j=1

δjcj < ε

if we take δjcj < ε/k.

4.4. Suppose g(x) = c1(a,b)(x). In this case

∫
g(x) cosnx dx = c

∫ b

a

cosnx dx =
c

n
sinnx

∣∣∣
b

a

so the absolute value of the integral is smaller than 2|c|/n and hence → 0.
Linearity extends the last result to step functions. Using Exercise 4.3 we can
approximate g by a step function q so that

∫
|g − q| dx < ε. Since | cosnx| ≤ 1

the triangle inequality implies
∣∣∣∣
∫
g(x) cosnx dx

∣∣∣∣ ≤
∣∣∣∣
∫
q(x) cosnx dx

∣∣∣∣+
∫

|g(x) − q(x)| dx

so the lim sup of the left hand side < ε and since ε is arbitrary the proof is
complete.

4.5. (a) does not imply (b): let f(x) = 1[0,1]. This function is continuous at
x 6= 0 and 1 but if g = f a.e. then g will be discontinuous at 0 and 1.
(b) does not imply (a): f = 1Q where Q = the rationals is equal a.e. to the
continuous function that is ≡ 0. However 1Q is not continuous anywhere.
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4.6. Let En
m = {ω : xn

m−1 ≤ f(x) < xn
m}, ψn = xn

m−1 on En
m and ϕn = xn

m on
En

m. ψn ≤ f ≤ ϕn ≤ ψn + mesh(σn) so (iv) in (4.7) implies
∫
ψn dµ ≤

∫
f dµ ≤

∫
ϕn dµ ≤

∫
ψn dµ+ mesh(σn)µ(Ω)

It follows from the last inequality that if we have a sequence of partitions with
mesh(σn) → 0 then

Ū(σn) =
∫
ψn dµ, L̄(σn) =

∫
ϕn dµ, →

∫
f dµ

A.5. Properties of the Integral

5.1. If |g| ≤M a.e. then |fg| ≤M |f | a.e. and (iv) in (4.7) implies
∫

|fg| dµ ≤M

∫
|f | dµ = M‖f‖1

Taking the inf over M now gives the desired result.

5.2. If µ({x : |f(x)| > M}) = 0 then
∫
|f |p dµ ≤ Mp so lim supp→∞ ‖f‖p ≤M .

On the other hand if µ({x : |f(x)| > N}) = δ > 0 then
∫
|f |p dµ ≥ δNp so

lim infp→∞ ‖f‖p ≥ N . Taking the inf over M and sup over N gives the desired
result.

5.3. Since |f + g| ≤ |f | + |g| we have
∫

|f + g|p dx ≤
∫

|f | |f + g|p−1 dx+
∫

|g| |f + g|p−1 dx

≤ ‖f‖p‖ |f + g|p−1‖q + ‖g‖p‖ |f + g|p−1‖q

Now q = p/(p− 1) so

‖ |f + g|p−1‖q =
(∫

|f + g|p dx
)1/q

= ‖f + g‖p−1
q

and dividing each side of the first display by ‖f+g‖p−1
q gives the desired result.

(ii) Since |f + g| ≤ |f | + |g|, (iv) and (iii) of (4.7) imply that
∫

|f + g| dx ≤
∫

|f | + |g| dx ≤
∫

|f | dx+
∫

|g| dx
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It is easy to see that if µ{x : |f(x)| ≥ M} = 0 and µ{x : |g(x)| ≥ N} = 0 then
µ{x : |f(x) + g(x)| ≥M +N} = 0. Taking the inf over M and N we have

‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞

5.4. If σn is a sequence of partitions with mesh(σn) → 0 then fσn(x) → f(x)
at all points of continuity of f so the bounded convergence theorem implies

U(σn) =
∫

[a,b]

fσn(x) dx →
∫

[a,b]

f(x) dx

A similar argument to applies to the lower Riemann sum and completes the
proof.

5.5. If 0 ≤ (gn +g−1 ) ↑ (g+g−1 ) then the monotone convergence theorem implies
∫
gn − g−1 dµ ↑

∫
g − g−1 dµ

Since
∫
g−1 dµ <∞ we can add

∫
g−1 dµ to both sides and use (ii) of (4.5) to get

the desired result.

5.6.
∑n

m=0 gm ↑
∑∞

m=0 gm so the monotone convergence theorem implies
∫ ∞∑

m=0

gm dµ = lim
n→∞

∫ n∑

m=0

gm dµ

= lim
n→∞

n∑

m=0

∫
gm dµ =

∞∑

m=0

∫
gm dµ

5.7. (i) follows from the monotone convergence theorem.
(ii) Let f = |g| and pick n so that

∫
|g| dµ−

∫
|g| ∧ n dµ < ε

2

Then let δ < ε/(2n). Now if µ(A) < δ
∫

A

g dµ ≤
∫

|g| − (|g| ∧ n) dµ+
∫

A

|g| ∧ n dµ < ε

2
+ µ(A)n < ε

5.8.
∑n

m=0 f1Em → f1E and is dominated by the integrable function |f |, so the
dominated convergence theorem implies

∫

E

f dµ = lim
n→∞

n∑

m=0

∫

Em

f dµ
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5.9. If xn → c ∈ (a, b) then f1[a,xn] → f1[a,c] a.e. and is dominated by |f | so
the dominated convergence theorem implies g(xn) → g(c).

5.10. First suppose f ≥ 0. Let ϕn(x) = m/2n on {x : m/2n ≤ f(x) < (m+1) <
2n} for 1 ≤ m < n2n and 0 otherwise. As n ↑ ∞, ϕn(x) ↑ f(x) so so the
dominated convergence theorem implies

∫
|f − ϕn|p dµ → 0. To extend to the

general case now, let ϕ+
n approximate f+, let ϕ−

n approximate f−, and let
ϕ = ϕ+ − ϕ− and note that

∫
|f − ϕ| dµ =

∫
|f+ − ϕ+

n | dµ+
∫

|f− − ϕ−
n | dµ

5.11. Exercise 5.6 implies
∫ ∑

|fn| dµ =
∑

n

∫
|fn| dµ <∞ so

∑
|fn| <∞ a.e.,

gn =
n∑

m=1

fm → g =
∞∑

m=1

fm a.e.

and the dominated convergence theorem implies
∫
gn dµ →

∫
g dµ. To finish

the proof now we notice that (iv) of (4.7) implies

∫
gn dµ =

n∑

m=1

∫
fm dµ

and we have
∑∞

m=1

∣∣∫ fm dµ
∣∣ ≤∑∞

m=1

∫
|fm| dµ <∞ so

n∑

m=1

∫
fm dµ→

∞∑

m=1

∫
fm dµ

A.6. Product Measure, Fubini’s Theorem

6.1. The first step is to observe A× Bo ⊂ σ(Ao × Bo) so σ(Ao × Bo) = A× B.
Since Ao × Bo is closed under intersection, uniqueness follows from (2.2).

6.2. |f | ≥ 0 so

∫
|f | d(µ1 × µ2) =

∫

X

∫

Y

|f(x, y)|µ2(dy)µ1(dx) <∞

This shows f is integrable and the result follows from (6.2).
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6.3. Let Y = [0,∞), B = the Borel subsets, and λ = Lebesgue measure. Let
f(x, y) = 1{(x,y):0<y<g(x)}, and observe

∫
f d(µ× λ) = (µ× λ)({(x, y) : 0 < y < g(x)})

∫

X

∫

Y

f(x, y) dy µ(dx) =
∫

X

g(x)µ(dx)
∫

Y

∫

X

f(x, y)µ(dx) dy =
∫ ∞

0

µ(g(x) > y) dy

6.4. (i) Let f(x, y) = 1(a<x≤y≤b) and observe

(µ× ν)({(x, y) : a < x ≤ y ≤ b}) =
∫
f d(µ× ν)

=
∫ ∫

f dµ dν =
∫

(a,b]

{F (y) − F (a)}dG(y)

(ii) Using (i) twice we have

∫

(a,b]

{F (y) − F (a)}dG(y) +
∫

(a,b]

{G(y) −G(a)}dF (y)

= F (a){G(b) −G(a)} +G(a){F (b) − F (a)}
+ (µ× ν)((a, b] × (a, b]) + (µ× ν)({(x, x) : a < x ≤ b})

The third term is (F (b) − F (a))(G(b) − G(a)) so the sum of the first three is
F (b)G(b) − F (a)G(a).
(iii) If F = G is continuous then the last term vanishes.

6.5. Let f(x, y) = 1{(x,y):x<y≤x+c}.

∫ ∫
f(x, y)µ(dy) dx =

∫
F (x+ c) − F (x) dx

∫ ∫
f(x, y) dxµ(dy) = c

∫
µ(dy) = cµ(R)

so the desired result follows from (6.2).

6.6. We begin by observing that

∫ a

0

∫ ∞

0

|e−xy sinx| dy dx =
∫ a

0

| sinx|
x

dx <∞
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since sinx/x is bounded on [0, a]. So Exercise 6.2 implies e−xy sinx is integrable
in the strip. Removing the absolute values from the last computation gives the
left hand side of the desired formula. To get the right hand side integrate by
parts twice:

f(x) = e−xy f ′(x) = −ye−xy g′(x) = sinx g(x) = − cosx
∫ a

0

e−xy sinx dx = −e−ay cosa+ 1 −
∫ a

0

ye−xy cosx dx

f(x) = −ye−xy f ′(x) = y2e−xy g′(x) = cosx g(x) = sinx

−
∫ a

0

ye−xy cosx dx = −ye−ay sin a−
∫ a

0

y2e−xy sinx dx

Rearranging gives

∫ a

0

e−xy sinx dx =
1

1 + y2
(1 − e−ay cosa− ye−ay sina)

Integrating and recalling d tan−1(y)/dy = 1/(1 + y2) gives the displayed equa-
tion. To get the bound note

∫∞
0
e−ay dy = 1/a and

∫∞
0
ye−ay dy = 1/a2.

A.8. Radon-Nikodym Theorem

8.1. If µ({A ∩ {x : f(x) < 0}) = 0 then for B ⊂ A

∫

B

f dµ =
∫

B∩{x:f(x)>0}
f dµ ≥ 0

If E = A ∩ {x : f(x) < −ε} has positive measure for some ε > 0 then

∫

E

f dµ ≤
∫

E

−ε dµ < 0

so A is not positive.

8.2. Let µ be the uniform distribution on the Cantor set, C, defined in Example
1.7 of Chapter 1. µ(Cc) = 0 and λ(C) = 0 so the two measures are mutually
singular.

8.3. If F ⊂ E then since (A ∪ B)c is a null set.

α(F ) = α(F ∩ A) + α(F ∩ B) ≤ α(E ∩ A) = α+(E)
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8.4. Suppose ν1
r + ν1

s and ν2
r + ν2

s are two decompositions. Let Ai be so that
νi

s(Ai) = 0 and µ(Ac
i ) = 0. Clearly µ(Ac

1 ∪ Ac
2) = 0. The fact that νi

r << µ
implies νi

r(A
c
1 ∪ Ac

2) = 0. Combining this with ν1
s (A1) = 0 = ν2

s (A2) it follows
that

ν1
r (E) = ν1

r (E ∩ A1 ∩ A2) = µ(E ∩ A1 ∩ A2)

= ν2
r (E ∩ A1 ∩ A2) = ν2

r (E)

This shows ν1
r = ν2

r and it follows that ν1
s = ν2

s .

8.5. Since µ2 ⊥ ν, there is an A with µ2(A) = 0 and ν(Ac) = 0. µ1 << µ2

implies µ1(A) = 0 so µ1 ⊥ ν.

8.6. Let gi = dνi/dµ. The definition implies νi(B) =
∫

B
gi dµ so

(ν1 + ν2)(B) =
∫

B

(g1 + g2) dµ

and the desired result follows from uniqueness.

8.7. If F = 1A this follows from the definition. Linearity gives the result for
simple functions; monotone convergence the result for nonnegative functions.

8.8. Let f = (dπ/dν)1B in Exercise 8.7 to get

∫

B

dπ

dν
· dν
dµ
dµ =

∫

B

dπ

dµ
dν = π(B)

where the second equality follows from a second application of Exercise 8.7.

8.9. Letting π = µ in Exercise 8.8 we have

1 =
dµ

dν
· dν
dµ




