at_hw1

Elements of algebraic topology (Munkres, James R) (Z-Library).pdf

9. Let K be a complex in \mathbb{R}^N . Show that |K| is a subspace of \mathbb{R}^N if and only if each point x of |K| lies in an open set of \mathbb{R}^N that intersects only finitely many simplices of K. Generalize to \mathbf{E}^{J} .

Proof:

 $(\Leftarrow): |K|$ is a subset of \mathbb{R}^N . And in general, the topology of |K| is finer than the subspace topology inherited from \mathbb{R}^N , which means some closed sets in the first topology may fail to be closed in the second.

But if K is finite, the topologies will be the same, because for any closed set $A\in |K|$ under the first topology, $A\cap\sigma$ is closed in σ for each $\sigma\in K$, thus is closed in \mathbb{R}^N . Hence, $A = igcup (A \cap \sigma)$, the union of closed set may not be closed,

but the union is finite, so A is closed in \mathbb{R}^N .

.

 (\Rightarrow) : Prove by contradiction. Suppose that there exists one point x in |K| such that any open set U in \mathbb{R}^N containing x intersects infinitely many simplices of K. Let $U = B_1(x)$, the open ball in \mathbb{R}^N centered at x with radius 1. Pick $x_1 \in \sigma_1 \cap B_1(x) \setminus \{x\}$, where σ_1 is a simplices that intersects $B_1(x)$. Then let $U=B_2(x)$, pick $x_2\in\sigma_2\cap B_{1/2}(x)\setminus\{x\}$, where σ_2 is a simplices different from σ_1 that intersects $B_{1/2}(x)...$ For $U=B_{1/n}(x)$, there always exists a simplices σ_n different from $\sigma_1, \ldots, \sigma_{n-1}$ since U intersects with infinitely many simplices of K, and let $x_n \in \sigma_n \cap B_{1/n}(x) \setminus \{x\}$. Therefore we have a sequence $x_1, x_2, \ldots, x_n, \ldots$ The set $\{x_n : n \in \mathbb{N}_{\geq 1}\}$ is closed under the topology of |K|, but not closed under the subspace topology inherited from \mathbb{R}^N since the limit point x is not contained in the set.

10. Show that the collection of all simplices in **R** of the form [1/(n + 1), 1/n] for n a positive integer, along with their vertices, is a complex whose polytope is the subspace (0,1] of **R**.

Proof:

It's obvious that the collection of all simplices in \mathbb{R} of the form $\left[\frac{1}{n+1}, \frac{1}{n}\right]$ for $n \in \mathbb{N}_{\geq 1}$ is a simplicial complex, denoted by K, and |K| = (0, 1].

Apply the conclusion in exercise 9 to this question. We know that $\forall x \in |K|$, xlies in $\left[\frac{1}{n+1}, \frac{1}{n}\right]$ for some $n \in \mathbb{N}_{\geq 1}$, there exists an open set $\left(\frac{1}{n+2}, \frac{1}{n-\frac{1}{2}}\right) \subset \mathbb{R}$, which intersects only the sets $\left[\frac{1}{n+2}, \frac{1}{n+1}\right], \left[\frac{1}{n+1}, \frac{1}{n}\right], \left[\frac{1}{n}, \frac{1}{n-1}\right]$ (if these sets $\in K$). Hence |K| = (0, 1] is a subspace of \mathbb{R}^N .

Figure 5.7

Figure 5.8

- 2. Consider the complex M pictured in Figure 5.7; it is the union of three triangles and a line segment. Compute the homology groups $H_1(M)$ and $H_2(M)$.
- 3. A 1-dimensional complex is called a tree if its 1-dimensional homology vanishes. Is either of the complexes pictured in Figure 5.8 a tree?
- 4. Let K be the complex consisting of the proper faces of a 3-simplex. Compute $H_1(K)$ and $H_2(K)$.

$$2$$
 We know that $M\simeq S^1$, so $H_1(M)\simeq H_1(S^1)=\mathbb{Z}, H_2(M)\simeq H(S^1)=0.$

3 We know that $K_1\simeq\{x\}, K_2\simeq S^1$, so $H_1(K_1)\simeq 0, H_1(K_2)\simeq \mathbb{Z}$. Hence K_1 is a tree, while K_2 is not.

4 We know that $K\simeq S^2$, so $H_1(K)\simeq 0, H_2(K)\simeq \mathbb{Z}.$

Note

这很 tricky, 其实我本来算了的, 但是出了点小问题, 交作业时间紧迫没有发现, 先放下我算的。

算出

 $egin{aligned} &Z_1(K) = \mathbb{Z}(e_1+e_5+e_4) + \mathbb{Z}(e_2-e_3-e_5) + \mathbb{Z}(e_3+e_6-e_4) + \mathbb{Z}(e_1+e_2+e_6), B_1(K) \ , \ &\Rightarrow H_1(K) = Z_1(K)/B_1(K) = 0. \end{aligned}$

 $Z_2(K) = \mathbb{Z}([v_1, v_2, v_3], [v_3, v_2, v_4], [v_2, v_1, v_4], [v_1, v_3, v_4]).$ 似乎 $Z_2(K) = B_2(K)$ 导致 $H_2(K) = 0$, 应该是我算错了.